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Proof of Theorem 5: In the optimal mechanism the principal selects
“quantity” and transfer functions, q(·) and t(·), and a vector of signals mn(·)
to solve:

max
q(θ),t(θ),mn(θ)

∫ θ

θ

(v(q(θ))− t(θ))f(θ)dθ

subject to the following incentive and the individual rationality constraints
for all θ and θ′:

t(θ)− h(q(θ), θ)− Cn(mn(θ), θ) ≥ t(θ′)− h(q(θ′), θ)− Cn(mn(θ′), θ), (42)

U(θ) ≡ t(θ)− h(q(θ), θ)− Cn(mn(θ), θ) ≥ 0. (43)

Using (43) to substitute t(θ) from the objective, and replacing the incentive
constraints (42) by the first-order condition associated with the agent’s utility
maximization, yields the following “relaxed” problem:

max
q(θ),mn(θ),U(θ)

∫ θ

θ

{v(q(θ))− h(q(θ), θ)− Cn(mn(θ), θ)− U(θ)} f(θ)dθ, (44)

subject to individual rationality constraint (43) and the first-order condition:

U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn(θ), θ). (45)

The proof of the Theorem proceeds as follows. First, we obtain the solution
to the relaxed program. Then we will verify that the solution to the relaxed
program satisfies the incentive constraints (42) and hence also solves the
unrelaxed problem.

To solve the relaxed problem, define the Hamiltonian:

H = (v(q)− h(q, θ)− Cn(mn, θ)− U) f(θ)− σ (hθ(q, θ) + Cnθ (mn, θ)) + ρU
(46)

Maximizing (46) w.r.t. q and mn yields the first order conditions:

{vq(q)− hq(q, θ)}f(θ)− σhqθ(q, θ) ≤ 0 (= 0, if q > 0) (47)

∂Cn

∂mi
(mn, θ)f(θ) + σ

∂2Cn

∂mi∂θ
(mn, θ) = 0 (48)

1 Corresponding Author; Email: sseverinov@gmail.com.
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The costate equation is

σ′(θ) = f(θ)− ρ(θ). (49)

Furthermore, the solution has to satisfy complementary slackness conditions

ρ(θ)U(θ) = 0, ρ(θ) ≥ 0, and U(θ) ≥ 0. (50)

We also have the following transversality conditions: σ(θ)U(θ) = 0,
σ(θ̄)U(θ̄) = 0, σ(θ) ≤ 0 and σ(θ̄) ≥ 0.

The rest of the proof proceeds through a number of Claims.
Claim 1. For θ ∈ [θ, θ] and σ ≥ 0 let q(σ, θ) and mn(σ, θ) maximize

the Hamiltonian H in (46) w.r.t. q and mn, respectively. Then q(σ, θ) is
decreasing in σ, strictly so whenever q(σ, θ) > 0, and mn(σ, θ) is strictly
increasing in σ, while mn(σ, θ) ≥ γn(θ) with strict inequality when σ > 0.

By definition, q(σ, θ) is the solution in q to

max
q≥0

{
v(q)− h(q, θ)− σ

f(θ)
hθ(q, θ)

}
, (51)

and mn(σ, θ) is the solution in mn to

min
mn∈Rn

{
Cn(mn, θ) +

σ

f(θ)
Cnθ (mn, θ)

}
. (52)

The existence of q(σ, θ) and mn(σ, θ) is guaranteed by the Weierstrass theorem
because, respectively: (i) q(σ, θ) belongs to [0, qFB(θ)]; (ii) the value of (52)
goes to ∞ as ||mn|| → ∞.2

Next, observe that the cross partial of the objective (51) in (q, σ) is equal
to − 1

f(θ)hqθ(q, θ) < 0. Hence it has strictly decreasing differences in (q, σ),

and so q(σ, θ) must be decreasing in σ. Similarly, mn(σ, θ) is increasing in σ.
Indeed, by Assumption 4(iii) the cross-partial of the objective in (52) w.r.t.

mn and θ equals 1
f(θ)

∂2Cn

∂mi∂θ
(mn, θ) < 0, so this objective has decreasing

differences in (mn, σ). Furthermore the objective in (52) is submodular in

mn because ∂2Cn

∂mi∂mj
+ σ

f(θ)
∂3Cn

∂mi∂mj∂θ
< 0 for all j 6= i. This inequality follows

from Assumption 4 (iii) when ∂3Cn

∂mi∂mj∂θ
≤ 0; and from Assumption 4 (ii) and

the fact that 0 ≤ σ ≤ F (θ) when ∂3Cn

∂mi∂mj∂θ
> 0.

Finally, recall that Cmi(m
n(σ, θ), θ) < 0 ifmn

i (θ) < γni (θ), and ∂Cn(mn,θ)
∂mi∂θ

<

0. So, if mn(σ, θ) is such that mn
i (θ) ≤ γni (θ) then

∂Cn(mn,θ)+ σ
f(θ)

Cnθ (mn,θ)

∂mi
=

Cnmi(m
n, θ) + σ

f(θ)C
n
miθ

(mn, θ) ≤ 0 with strict inequality either if mn
i (θ) <

γni (θ) or if mn
i (θ) = γni (θ) and σ > 0. Therefore, we must have mn

i (θ) ≥ γni (θ)
for all i, with strict inequality when σ > 0.

2 Henceforth, we will also assume that q(σ, θ) and mn(σ, θ) are unique. This can always
be guaranteed by assuming that the objective function in (51) is quasiconcave in q, and
that the objective function in (52) is quasiconvex in mn.
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Claim 2. Let U ′(σ, θ) = −hθ(q(σ, θ), θ) − Cnθ (mn(σ, θ), θ). Then for all
θ ∈ [θ, θ] there exists a unique σ̆(θ) such that U ′(σ, θ) < 0 if σ < σ̆(θ) and
U ′(σ, θ) > 0 if σ > σ̆(θ). Furthermore, σ̆(θ) = 0 and σ̆(θ) > 0 for all θ < θ.

Since hqθ > 0 and ∂2Cn

∂mi∂θ
< 0 for all i, it follows from Claim 1 that U ′(σ, θ)

is strictly increasing in σ. Hence there is at most one value σ such that
U ′(σ, θ) = 0. To establish that such value exists, let us show that U ′(σ, θ) ≤ 0
when σ = 0, and U ′(σ, θ) > 0 when σ is sufficiently large.

First, consider σ = 0. It follows from (51) and (52) that q(0, θ) = qFB(θ)
≥ 0 and mn(0, θ) = γn(θ) for all θ. Since Cnθ (γ(θ), θ) = 0, we have
U ′(0, θ) = −hθ(qFB(θ), θ) ≤ 0. This inequality is strict for all θ < θ because
qFB(θ) > 0 for all such θ. It follows that σ̆(θ) > 0 for all θ < θ. Furthermore,
since qFB(θ) = 0 we have U ′(0, θ) = −hθ(0, θ) = 0, so σ̆(θ) = 0.

Next, let us show that U ′(σ, θ) > 0 for all σ > σ(θ), where σ(θ) =
v′(0)−hq(0,θ)

minq∈[0,qFB(θ)] hqθ(q,θ)f(θ). To this end, we first claim that q(σ, θ) = 0 for all

σ ≥ σ(θ). Indeed, suppose to the contrary that q(σ, θ) > 0 for some σ ≥ σ(θ).
Since q(σ, θ) satisfies (47), we have:

vq(q(σ, θ))− hq(q(σ, θ), θ) =
σ

f(θ)
hqθ(q(σ, θ), θ)

≥ σ

f(θ)
hqθ(q(σ, θ), θ) ≥ v′(0)− hq(0, θ). (53)

But (53) contradicts the assumption that vq(q)−hq(q, θ) is strictly decreasing
in q.

Since q(σ, θ) = 0 for all σ ≥ σ(θ), it follows that U ′(σ, θ) =
−Cnθ (mn(σ, θ), θ) for all σ ≥ σ(θ). By Claim 1, mn(σ, θ) > γn(θ) whenever

σ > σ(θ), because σ(θ) ≥ 0. Since Cnθ (γn(θ), θ) = 0 and ∂2Cn

∂θ∂mi
< 0, it then

follows that Cnθ (mn(σ, θ), θ) < 0, thereby establishing that U ′(σ, θ) > 0 for
all σ > σ(θ). Combining this with U ′(0, θ) ≤ 0 and the uniqueness of σ̆(θ)
s.t. U ′(σ̆(θ), θ) = 0 implies that U ′(σ, θ) < 0 if σ < σ̆(θ), and U ′(σ, θ) > 0 if
σ > σ̆(θ).

Claim 3. U(F (θ), θ) has a unique minimizer θ̂n ∈ (0, θ∗). Moreover,

U ′(F (θ), θ) < 0 for θ < θ̂n and U ′(F (θ), θ) > 0 for θ > θ̂n.
It is easy to see that UnSB(θ) ≡ U(F (θ), θ) is strictly quasiconvex. So it has

a unique global and local minimizer which we take to be θ̂n. So U ′(F (θ), θ) < 0

for all θ ∈ [θ, θ̂n) and U ′(F (θ), θ) > 0 for all θ ∈ [θ̂n, θ].
We will establish that U ′(F (θ), θ) < 0 and U ′(F (θ∗), θ∗) > 0, implying

that θ̂n ∈ (0, θ∗). By Claim 2, σ̆(θ) > 0 and hence U ′(F (θ), θ) = U ′(0, θ) <
0. Now, q(F (θ∗), θ∗) = qSB(θ∗) = 0 so that hθ(q(F (θ∗), θ∗), θ∗) = 0.
Also, since F (θ∗) > 0, by Claim 1 mn(F (θ∗), θ∗) > γn(θ∗) and so
Cnθ (mn(F (θ∗), θ∗), θ∗) < 0. Thus U ′(F (θ∗), θ∗) > 0.

Claim 4. On the interval [θ, θ̂n) the solution to the relaxed program is such
that q(θ) = qSB(θ), mn(θ) = mn(F (θ), θ) and U ′(θ) < 0 .
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By Claim 3 it suffices to prove that σ(θ) = F (θ) for all θ ≤ θ̂n. Note
that σ(θ) ≤ F (θ) by the transversality condition σ(θ) ≤ 0, and the fact that
σ′(θ) ≤ f(θ), which is implied by the costate equation (49) and the condition
ρ(θ) ≥ 0.

Now recall from the proof of Claim 2 that U(σ, θ) is strictly increasing in
σ. It follows from σ(θ) ≤ F (θ) that U ′(θ) = U ′(σ(θ), θ) ≤ U ′(F (θ), θ) < 0

for all θ ≤ θ̂n, where the final inequality holds by Claim 3. Since U(θ̂n) ≥ 0,

we therefore have U(θ) > 0 for all θ < θ̂n. The transversality condition then
implies that σ(θ) = 0, and the complementary slackness condition (50) then

implies that ρ(θ) = 0 so that σ′(θ) = f(θ) for all θ < θ̂n. This establishes that

σ(θ) = F (θ) for all θ < θ̂n, and hence by continuity also at θ̂n.

Claim 5. U(θ̂n) = 0, and σ(θ) < F (θ) for all θ > θ̂n.

Since σ(θ̂n) = F (θ̂n) by Claim 4 and σ′(θ) ≤ f(θ) for all θ by (49), it

follows that σ(θ) ≤ F (θ) for all θ > θ̂n.

Let θ′ = max{θ ≥ θ̂n : σ(θ) = F (θ)}, and suppose that contrary to

this Claim θ′ > θ̂n. Let us show that in this θ′ = θ then. Indeed, since
σ(θ′) = F (θ′), we must have σ(θ) = F (θ) for all θ ∈ (θ̂n, θ

′]. It then follows

from Claim 3 that U ′(θ) = U ′(σ(θ), θ) = U ′(F (θ), θ) > 0 on (θ̂n, θ
′], implying

that U(θ′) > 0. Thus if θ′ < θ, there exists a right neighborhood V of θ′

on which the individual rationality constraint U(θ) ≥ 0 is not binding. It
then follows from the complementary slackness condition (50) that on this
neighborhood we have ρ(θ) = 0, and hence by the costate equation (49) that
σ′(θ) = f(θ). Thus σ(θ) = F (θ) for all θ ∈ V , contradicting the definition of
θ′, thereby establishing that θ′ = θ.

Next, let us show that σ̆(θ) < F (θ) for all θ > θ̂n. Indeed, since σ(θ) = F (θ)

for all θ > θ̂n, Claim 3 yields U ′(θ) = U ′(F (θ), θ) > 0 for all θ > θ̂n. Because

U ′(σ, θ) is strictly increasing in σ this implies that σ̆(θ) < F (θ) for all θ > θ̂n.
Since q(θ) = q(σ(θ), θ) = q(F (θ), θ) and mn(θ) = mn(σ(θ), θ) =

mn(F (θ), θ), and since 0 < σ̆(θ) < F (θ) for all θ > θ̂n, it follows from Claim
1 that q(θ) < q(σ̆(θ), θ) < qFB(θ) and γn(θ) < mn(σ̆(θ), θ) < mn(F (θ), θ) =

mn(θ) for all θ ∈ (θ̂n, θ). But then the value of the relaxed program can be
strictly increased by setting U(θ) = 0 and assigning (q(σ̆(θ), θ),mn(σ̆(θ), θ))

on the interval [θ̂n, θ], as follows from the fact that:

v(q(σ̆(θ), θ))− h(q(σ̆(θ), θ), θ)− Cn(mn(σ̆(θ), θ), θ) >

v(q(θ))− h(q(θ), θ)− Cn(mn(θ), θ). (54)

This contradiction establishes that σ(θ) < F (θ) for all θ > θ̂n.

It follows that there exists a decreasing sequence {θ`} ⊂ (θ̂n, θ) converging

to θ̂n, such that ρ(θ`) > 0 and hence U(θ`) = 0. So, by continuity of U(·) we

have U(θ̂n) = 0.
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Claim 6. U(θ) = 0 for all θ > θ̂n if and only if σ̆′(θ) ≤ f(θ) for all θ >

θ̂n.
If U(θ) = 0 for all θ > θ̂n, then σ(θ) = σ̆(θ) and hence σ′(θ) = σ̆′(θ) for

all θ > θ̂n. Since ρ(θ) ≥ 0, by the costate equation we have σ̆′(θ) = σ′(θ) =

f(θ)− ρ(θ) ≤ f(θ) for all θ > θ̂n.

Conversely, suppose that σ̆′(θ) ≤ f(θ) for all θ > θ̂n, and that contrary to

the statement of the claim there exists some θ ≥ θ̂n such that U(θ) > 0. Let

θ1 = inf{θ ≥ θ̂n : U(θ) > 0}.
We now claim that σ(θ1) = σ̆(θ1). If θ1 > θ̂n this is immediate, since we

then have U(θ) = 0 and hence σ(θ) = σ̆(θ) for all θ ∈ [θ̂n, θ1]. Now if θ1 = θ̂n,

it follows from Claim 5 that for every ε > 0 there exists (θ′, θ′′) ⊂ (θ̂n, θ̂n + ε)
on which U(θ) = 0 and hence σ(θ) = σ̆(θ). The continuity of the functions

σ(·) and σ̆(·) then implies that σ̆(θ̂n) = σ(θ̂n).
Next, we establish that σ(θ) > σ̆(θ) for all θ > θ1. Indeed, σ(θ) ≥ σ̆(θ)

for all θ > θ1, since on any interval on which U(t) > 0 we have σ′(t) =
f(t) ≥ σ̆′(t), and on any interval on which U(t) = 0 we have σ(t) = σ̆(t).
But we cannot have σ(θ) = σ̆(θ) for any θ > θ1, as this would imply that
σ′(t) = f(t) = σ̆′(t) for all t ∈ (θ1, θ), hence that σ(t) = σ̆(t) for all t ∈ [θ1, θ].
But then we have U(t) = U(θ1) for all t ∈ [θ1, θ], contradicting the definition
of θ1.

It follows from the fact that σ(θ) > σ̆(θ) for all θ > θ1 that U ′(θ) =
U ′(σ(θ), θ) > U ′(σ̆(θ), θ) = 0, and hence that U(θ) is strictly increasing for
all θ > θ1. As in the proof of Claim 5, we can then show that the value
of the relaxed program can be improved by setting U(θ) = 0 and assigning
(q(σ̆(θ), θ),mn(σ̆(θ), θ)) for all θ > θ1. This contradiction establishes that

U(θ) = 0 for all θ > θ̂n.

Claim 7. mn(θ) = γn(θ), mn(θ) = γn(θ) and mn(θ) > γn(θ) for all
θ ∈ (θ, θ). Furthermore, q(θ) > 0 for all θ ∈ [θ, θ).

By Claim 4 σ(θ) = F (θ) for all θ ≤ θ̂n, and by Claim 6 σ(θ) = σ̆(θ)

for all θ ≥ θ̂n. Also, by Claim 2, σ̆(θ) = 0 and σ̆(θ) > 0 for all θ < θ. So,
σ(θ) = σ(θ) = 0, and σ(θ) > 0 for all θ ∈ (θ, θ). Then from Claim 1 it
follows that mn(θ) > γn(θ) for all θ ∈ (θ, θ). Further, from (52) it follows
that mn(0, θ) = γn(θ). Hence, mn(θ) = γn(θ), mn(θ) = γn(θ).

To establish that q(θ) > 0 for all θ < θ, note that q(θ) = qSB(θ) > 0

for all θ ∈ [θ, θ̂n). Now, if q(θ) = 0 for some θ ∈ [θ̂n, θ), then since
hθ(0, θ) = 0 equation (45) implies that 0 = U ′(θ) = Cnθ (mn(θ), θ). But
from mn(θ) > γn(θ), Cnθ (γn(θ), θ) = 0 and Cnmi < 0 for all i it follows

that Cnθ (mn(θ), θ) < 0, a contradiction. Thus q(θ) > 0 for all θ ∈ [θ̂n, θ).

Claim 8. Global incentive compatibility of the solution to the relaxed
program.
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It remains to show that this solution satisfies incentive constraints (42) i.e.,
for any pair of types (θ, θ′) we have:

U(θ)−U(θ′) + h(q(θ′), θ) +Cn(mn(θ′), θ)− h(q(θ′), θ′)−Cn(mn(θ′), θ′) ≥ 0
(55)

First, suppose that θ′ ∈ [θ̂, θ] i.e., U(θ′) = 0. We will consider the case
θ′ > θ. The proof for the case θ′ < θ is similar. Then we have:

U(θ)− U(θ′) + h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ′)− Cn(mn(θ′), θ′) =

U(θ)− U(θ′)−
∫ θ′

θ

hθ(q(θ
′), s) + Cnθ (mn(θ′), s)ds >

−
∫ θ′

θ

hθ(q(θ
′), θ′) + Cnθ (mn(θ′), θ′)ds = 0 (56)

The first inequality holds because U(θ) ≥ 0 = U(θ′) The last equality holds

because θ′ ∈ [θ̂n, θ] and so U ′(θ′) = −hθ(q(θ′), θ′) − Cnθ (mn(θ′), θ′) = 0,
establishing the incentive compatibility of our mechanism for this case.

Next, suppose that θ, θ′ ∈ [θ, θ̂n]. Over this region, the solution is
{qSB(θ),mn(F (θ), θ), F (θ)}, and incentive compatibility holds if qSB(θ) is
decreasing in θ, and mn(F (θ), θ) is increasing in θ (Guesnerie and Laffont,
1984, Theorem 2). That qSB(θ) is decreasing in θ follows from Assumption
4(i). Next, as a maximizer of the Hamiltonian H, mn(F (θ), θ) minimizes

Cn(mn, θ) + F (θ)
f(θ)C

n
θ (mn, θ). By Assumption 4(ii), this objective has strictly

increasing differences in (mn, θ), and is supermodular in mn. Therefore,
mn(F (θ), θ) is increasing in θ, establishing incentive compatibility in this
case.

Finally, let us show that incentive constraints hold for any pair (θ, θ′) such

that θ ∈ (θ̂, 1] and θ′ ∈ [θ, θ̂]. Let us rewrite the left-hand side of (55) as
follows:

U(θ)− U(θ′) + h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ′)− Cn(mn(θ′), θ′) =

U(θ)− U(θ̂) +
(
h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ̂)− Cn(mn(θ′), θ̂)

)
+

− U(θ′) + U(θ̂) + h(q(θ′), θ̂) + Cn(mn(θ′), θ̂)− h(q(θ′), θ′)− Cn(mn(θ′), θ′).
(57)

To confirm that the incentive constraint between θ and θ′ holds, we need to
show that the expression in (57) is nonnegative. To this end, we will establish
separately that both the second line and the third line in (57) are nonnegative.

Start with the second line. We have U(θ) = U(θ̂) = 0. Further, consider the
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expression in brackets in the second line. We have:

h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ̂)− Cn(mn(θ′), θ̂) =∫ θ

θ̂

hθ(q(θ
′), s) + Cnθ (mn(θ′), s)ds ≥∫ θ

θ̂

hθ(q(θ
′), θ̂n) + Cnθ (mn(θ′), θ̂n)ds >

∫ θ

θ̂

hθ(q(θ̂), θ̂) + Cnθ (mn(θ̂), θ̂n)ds = 0.

(58)

The first inequality in (58) holds because hθθ ≥ 0 and Cnθθ > 0. The

second inequality holds because q(θ′) > q(θ̂) and mn(θ′) < mn(θ̂) (as
established above in this Claim), while hθq > 0 and Cn(mn, θ) has strictly
decreasing differences in (mn, θ). The last equality holds because by Claim 8

hθ(q(θ̂), θ̂) + Cnθ (mn(θ̂), θ̂) = 0. So, the second line in (57) is nonnegative.
Now consider the third line in (57). We have:

− U(θ′) + U(θ̂) + h(q(θ′), θ̂) + Cn(mn(θ′), θ̂)− h(q(θ′), θ′)− Cn(mn(θ′), θ′)

= −
∫ θ̂

θ′
hθ(q(s), s) + Cnθ (mn(s), s)ds+

∫ θ̂n

θ′
hθ(q(θ

′), s) + Cnθ (mn(θ′), s)ds

=

∫ θ̂

θ′
(hθ(q(θ

′), s)− hθ(q(s), s)) + (Cnθ (mn(θ′), s)− Cnθ (mn(s), s)) ds > 0

(59)

The first equality holds because U ′(θ) = −hθ(q(θ), θ) − Cnθ (mn(θ), θ). The
inequality holds because, as shown in this Claim, q(θ′) > q(s) and mn(θ′) <

mn(s) for all s ∈ (θ′, θ̂n], while hθq > 0 and Cn(mn, θ) has decreasing
differences in (mn, θ). So, (57) is nonnegative. Q.E.D.

Proof of Lemma 1: Let us show that σ̆′(θ) ≤ f(θ). By definition,
σ̆(θ) satisfies U ′(σ̆(θ), θ) = 0, and so U ′σσ̆

′(θ) + U ′θ = 0. Because U ′σ > 0,
σ̆′(θ) ≤ f(θ) if and only if

U ′σ(σ̆(θ), θ)f(θ) + U ′θ(σ̆(θ), θ) ≥ 0. (60)

Recall that U ′(σ, θ) = −hθ(q(σ, θ), θ) − Cnθ (mn(σ, θ), θ). Hence, U ′σ =
−hqθqσ−Cnθmmn

σ and U ′θ = hqθqθ−hθθ−Cnθmmn
θ−Cnθθ. Thus (60) is equivalent

to

−hqθ[qσf + qθ]− hθθ − Cnθm[mn
σf + mn

θ ]− Cnθθ ≥ 0. (61)

So it is sufficient to verify that the assumptions of the Lemma guarantee that
the inequality (61) holds. In fact, we will show that hqθ[qσf + qθ] + hθθ ≤ 0
and Cnθm[mn

σf + mn
θ ] + Cnθθ ≤ 0.
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To this effect, let us first calculate qσ and qθ. As a maximizer of (51),
q(σ, θ) satisfies the first-order condition v′(q) − hq(q, θ) − σ

f(θ)hqθ(q, θ) = 0,

from which it follows that:(
v′′(q)− hqq −

σ

f
hqqθ

)
qσf − hqθ = 0,(

v′′(q)− hqq −
σ

f
hqqθ

)
qθ − hqθ

(
1− σf ′

f2

)
− σ

f
hqθθ = 0.

Because q(σ, θ) is a maximizer, the second order condition v′′(q) − hqq −
σ
f hqqθ ≤ 0 holds. Consequently, the inequality hqθ[qσf + qθ] + hθθ ≤ 0 is
equivalent to

hqθ

[
hqθ

(
2− σf ′

f2

)
+
σ

f
hqθθ

]
+ hθθ[v

′′(q)− hqq −
σ

f
hqqθ] ≥ 0. (62)

The second term in (62) is positive because hθθ ≤ 0 by assumption of the
Lemma.

Next, 1− σf ′

f2 > 0. This is immediate if f ′ ≤ 0. If f ′ > 0 then, since F (θ)
f(θ) is

increasing by assumption, it follows that 1− σf ′

f2 ≥ 1− Ff ′

f2 = 1−
(
F
f

)′
> 0.

So the assumption that hqθ ≥ 0 and hqθθ ≥ 0 also guarantees that the first
term in (62) is positive.

Similar steps establish that Cnθm[mn
σf+mn

θ ]+Cnθθ ≤ 0 under the conditions
of the Lemma.

Proof of Theorem 6: First, we claim that there exists K such that
σ(θ, n) ≤ K

n . Since ∂Cn

∂mi
(γi(θ),m

n
−i, θ) = 0 , it follows from the mean value

Theorem that ∂Cn

∂mi
(mi,m

n
−i, θ) = ∂2Cn

∂m2
i

(m̄i,m
n
−i, θ)(mi − γi(θ)) for some

m̄i ∈ (mi, γi). From (48) we then have:

mi(θ)− γi(θ) = −σ(θ, n)
∂2Cn

∂θ∂mi
(mn(θ), θ)

∂2Cn

∂m2
i

(m̄i,mn
−i(θ), θ)

. (63)

Using the fact that Cnθ (γn(θ), θ) = 0, and applying the mean value Theorem
once more yields:

Cnθ (mn(θ), θ) =

n∑
i=1

∂2Cn

∂θ∂mi
(m̄n, θ)(mi(θ)− γi(θ)), (64)

where m̄n = γn(θ) + ε(θ)(mn(θ) − γn(θ)), for some ε(θ) ∈ (0, 1). Recall
that by Claim 2 of Theorem 5 σ(θ, n) ≥ 0. Using the assumption that

0 ≤ ∂2Cn

∂m2
i
≤ v̄,

∣∣∣ ∂2Cn

∂θ∂mi

∣∣∣ ≥ v > 0, (63) and (64) then yield:

Cnθ (mn(θ), θ) ≤ −nσ(θ, n)
v2

v̄
. (65)
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Next, hθ(q(θ), θ) ≤ hθ(qFB(θ), θ) ≤ qFB(θ) maxhqθ, where the first inequality
follows from hqθ > 0, and the second inequality holds because hθ(0, θ) = 0
and qFB(θ) is decreasing in θ. Since U ′(θ) ≤ 0 on the interval [θ, θ], equation
(45) implies

0 ≥ U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn(θ), θ) ≥ −qFB(θ) maxhqθ + nσ(θ, n)
v2

v̄
.

Setting K = v̄qFB(θ)
v2 maxhqθ then establishes the claim.

By (63), mi(θ)− γi(θ) ≤ σ(θ, n) v̄v ≤
K
n
v̄
v . Furthermore, by (47) we have

σ(θ, n)hqθ(q(θ), θ) = {vq(q(θ))− hq(q (θ), θ)}f(θ) =

f(θ)(vqq(q1(θ))− hqq(q1(θ), θ)(q(θ)− qFB(θ)), (66)

for some q1(θ) ∈ (q(θ), qFB(θ)). Hence qFB(θ) − q(θ) ≤ σ(θ, n)M ≤ KM
n ,

where M =
maxhqθ

min f(θ)×min |vqq−hqq| , and so q(θ) → qFB(θ) and mi(θ) → γi(θ)

uniformly in θ.
Next, recall that qSB(θ̂(n)) = q(θ̂(n)) for all n. Hence,

qFB(θ̂(n))− qSB(θ̂(n)) =
F (θ̂(n))

f(θ̂(n))

hqθ
|vqq − hqq|

(q2(θ̂(n)), θ̂(n) ≤ KM

n
,

for some q2(θ̂(n)) ∈ (qSB(θ̂(n)), qFB(θ̂(n)). Since F (θ̂(n)) ≥(
θ̂(n)− θ

)
minθ∈[θ,θ̂(n)] f(θ), we have θ̂(n) − θ ≤ KMP

n , where

P = max f(θ)
min f(θ)

min |vqq−hqq|
maxhqθ

. Thus θ̂(n)→ θ.

Since U(θ) is decreasing on [θ, θ̂n(n)] and U(θ) = 0 for all θ ∈ [θ̂n(n), θ],
we have:

U(θ) ≤ (θ̂n(n)−θ) max
θ∈[θ,θ̂n(n)]

|U ′(θ)| ≤ (θ̂n(n)−θ) max
θ∈[θ,θ̂n(n)]

hθ(q(θ), θ) ≤
KMPQ

n
,

where Q = maxθ∈[θ,θ̂n(n)] hqθ(q(θ), θ). Hence U(θ)→ 0 uniformly in θ.

Finally, since Cn(γn(θ), θ) = 0 and Cnθ (γn(θ), θ) = 0, Taylor series
expansion yields:

Cn(mn(θ), θ) =

n∑
i=1

(mi − γi(θ))2

2

∂2Cn

∂m2
i

(mn, θ) ≤ v̄

2

n∑
i=1

(mi−γi(θ))2 ≤ 1

n

K2v̄3

v2
,

(67)
where mn ∈ (mn(θ), γn(θ)). Thus Cn(mn(θ), θ)→ 0, uniformly in θ. Q.E.D.

Proof of Lemma 2: Let us first show that W (n) is strictly concave. Since
the optimal mechanism is unique, W (n) is continuously differentiable and by

Seierstad and Sydsaeter (1999, p. 217), dW (n)
dn =

∫ θ̄
θ
∂H
∂n (q,m,U, σ, n, θ)dθ.
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By the first-order condition (48), we have
cmθ(mni (θ),θ)
cm(mni (θ),θ) =

cmθ(mnj (θ),θ)

cm(mnj (θ),θ) for

all i, j ∈ {1, ..., n}. So, the assumption that cmmcmθ − cmmθcm < 0 implies
that the optimal mn

i (θ) is unique and is the same for all i, so we can drop the
subscript i and denote the optimal message by mn(θ).

Using (46) yields ∂H
∂n = −c(mn(θ), θ)f(θ)− σ(θ)cθ(m

n(θ), θ). Substituting

for σ(θ) from (48) we then obtain ∂H
∂n =

(
cθcm
cmθ
− c
)
f , so we have:

dW (n)

dn
=

∫ θ̄

θ

(
cθ(m

n(θ), θ)cm(mn(θ), θ)

cmθ(mn(θ), θ)
− c(mn(θ), θ)

)
f(θ)dθ. (68)

Thus, W (n) is concave in n if
(
cθcm
cmθ
− c
)

decreases in n. Note that

d

dn

(
cθcm
cmθ

− c
)

=
cθ
c2mθ

(cmmcmθ − cmmθcm)
∂mn

∂n
. (69)

By the first-order condition (48) and Claim 7 in Theorem 5, mn(θ) satisfies

cm(mn(θ), θ)f(θ) + cmθ(m
n(θ), θ)F (θ) = 0, and so ∂mn(θ)

∂n = 0 for θ ∈ [θ, θ̂n).

Also, hθ(q(θ), θ) + ncθ(m
n(θ), θ) = 0 for all θ ∈ [θ̂n, θ]. This equality can

hold only if ∂mn(θ)
∂n < 0 for θ ∈ [θ̂n, θ] because hqθ > 0 and cmθ < 0. Finally,

by Theorem 5 mn(θ) > γ(θ), so cθ < 0. It then follows from the assumption

cmmcmθ − cmmθcm < 0 that (69) is strictly negative on [θ, θ̂n) and equal to

zero on [θ̂n, θ]. So W (n) is strictly concave.
Now let η(m, θ) = cθcm

cmθ
−c. Observe that η(γ(θ), θ) = 0 since c(γ(θ), θ) = 0

and cθ(γ(θ), θ) = 0 for every θ. Furthermore, since cθ(m, θ) < 0 for m > γ(θ)
and cmmcmθ − cmmθcm < 0, we have ηm(m, θ) > 0 and hence η(m, θ) > 0 for
m > γ(θ). Since mn(θ) > γ(θ), it follows that the integrand in (68) is strictly
positive for all θ, so W (n) is strictly increasing in n.

To see that K > 0, note that φ(m, θ) = cθcm
cmθc

− 1 is continuous in m with

φ(m, θ) = η(m,θ)
c(m,θ) > 0 for all m > γ(θ). Applying l’Hospital’s rule yields:

lim
m→γ(θ)

φ(m, θ) = lim
m→γ(θ)

cmθcm + cθcmm
cmθcm + cmmθc

= lim
m→γ(θ)

cmθ + cθ
cm
cmm

cmθ + c
cm
cmmθ

= 2,

where the final inequality holds because by l’Hospital’s rule we have
limm→γ(θ)

cθ
cm

= cmθ
cmm

and limm→γ(θ)
c
cm

= limm→γ(θ)
cm
cmm

= 0.
Thus φ(m, θ) is continuous at m = γ(θ), and satisfies φ(γ(θ), θ) = 2. It

follows that K, the minimum of φ(m, θ) over the set D, is strictly positive.
Finally, it follows from Theorem 5 that mn(θ) ∈ [γ(θ), γ(θ)]. The definition

of K and K then imply that Kc ≤ cmcθ
cmθ
− c ≤ Kc for all θ, and so

0 < K

∫ θ̄

θ

c(m(θ), θ)f(θ)dθ ≤ dW (n)

dn
= G ≤ K

∫ θ̄

θ

c(m(θ), θ)f(θ)dθ.

Q.E.D.
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