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Abstract

We show why the failure of the affiliation assumption prevents the double
auction from achieving efficient outcomes when values are interdependent.
This motivates the study of an ascending price version of the double auction.
It is shown that when there is a sufficiently large, but still finite, number
of sellers, this mechanism has an approximate perfect Bayesian equilibrium
in which traders continue bidding if and only if their true estimates of the
’value’ of the object being traded exceed the current price. This equilibrium
is ex post efficient and has a rational expectations property in the sense that
along the equilibrium path traders appear to have made the best possible
trades conditional on information revealed by the trading process.

1 Introduction

Double auctions have been shown to work very effectively in markets with many
buyers and sellers when traders have private values. Rustichini, Satterthwaite, and
Williams (1994) have shown that in independent private value environments, an
equilibrium of a standard (one-shot) double auction quickly converges to an effi-
cient allocation as the number of traders get large (see also Gresik and Satterth-
waite (1989)). More recently, Cripps and Swinkels (2006) have provided similar
results for correlated value environments.

Less in known about the properties of double auctions in large interdependent
value environments. Interdependence may be important in large markets for a
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number of reasons. For example, auctions of residential condominiums or simi-
lar housing units involve interdependence because potential buyers typically care
about the types of their future neighbors. Notably, for large condominium de-
velopments, several similar units are typically on the market at any given time.
Auctions for vacation time shares are common and might have similar interdepen-
dencies of valuations. In large procurement auctions interdependencies are often
generated endogenously if winning bidders ultimately contract out work to losing
bidders. The reason is that strong (or low cost) losing bidders may make it cheaper
for the winning bidder to execute the project by contracting out some parts of it.
Similarly, in durable goods markets, resale opportunities may be affected not only
by information possessed by other traders about the value of future trade, but
also because existing traders may be competitors or customers in future resale. In
financial markets, traders have diverse information about the underlying value of
the securities being traded. Each trader’s information potentially affects the value
of every other trader.

Perry and Reny (2006), continuing the research agenda of Milgrom (1981) and
Pesendorfer and Swinkels (1997) and (2000), have shown that, in some interde-
pendent value environments where trader types are affiliated, the double auction
supports equilibrium prices that converge in probability to the full information
market-clearing price as the number of traders gets large. In particular, this im-
plies that, when the number of traders is large, the double auction realizes almost
all gains from trade with high probability and provides a strategic foundation for
rational expectations equilibrium.

It is quite surprising that the static double auction (where each trader submits
only one bid or ask) supports anything close to the efficient competitive allocation,
because this mechanism imposes strong restrictions on the way in which individual
trading decisions depend on other traders’ types. To see this, observe that a bid
or an ask in a double auction is, in fact, a contingent trading plan. For example, a
seller’s ask is a plan saying that, in an auction with m buyers, the seller wants to
sell if the m-th lowest value in the ordered list of all traders’ bids and asks is above
his ask price. This is a very restricted contingent plan since the trading decision
can only depend on the realization of the m-th lowest order statistic of the bids
and asks, but not on the distribution of bids and asks below this order statistic.
Furthermore, a seller has to sell whenever the value of this order statistic exceeds
his ask price. These restrictions on the traders’ contingent trading plans are very
natural in the private value case, but are very restrictive in the interdependent
value case, as we illustrate below.

Notably, the convergence results of Perry and Reny (2006) rely on an affiliation
assumption. This assumption is common in auction theory. Nonetheless, it is a
restriction.1 We show by example that, when the affiliation assumption does not

1Lauermann and Merzyn (2006) have recently shown that in the case where values are con-
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hold, then the restrictiveness of the feasible trading strategies in a double auction,
in particular, the traders’ inability to condition more finely on the information
revealed in the course of bidding, leads to a failure of efficiency of double auctions.2

This motivates us to study an ascending-price version of the double auction.
We demonstrate that this mechanism supports allocations that become ex post
efficient as the number of traders gets large in an interdependent value environment
without the affiliation assumption.

Our ascending-price double auction mechanism works as follows. Initially, the
price is set sufficiently low that all buyers would be willing to buy at that price and
no seller would strictly prefer to sell. At this initial price, all traders simultaneously
declare whether they wish to continue bidding. All traders who wish to continue
bidding are said to be active at the initial price. Traders who declare that they
do not want to continue bidding because they would not want to pay a strictly
higher price or because the price is already high enough that they are willing to
sell, are considered to be inactive bidders who have dropped out of the bidding
at the initial price. If the number of active bidders exceeds the number of units
for sale, the price is increased according to the procedure that will be described
below, and the process is repeated. A trader can become inactive at any price and
her/his decision to do so is publicly observable. Once the number of active traders
is less than or equal to the number of units of output for sale, the auction ends.
Each buyer who is active at the final price pays that price and receives a unit of
the good.3 Sellers who are inactive when the auction ends trade and are paid the
price at which the auction has ended. Sellers who are active at the final price leave
the auction without trading.

We show that this mechanism has an approximate perfect Bayesian equilibrium
in which traders remain active only so long as their values conditional on the
information made public by the bidding process exceed the current price. Since
traders’ who drop out of the bidding reveal their types in this equilibrium, other
traders can condition their bidding decisions much more finely on the distribution
of types of the others. In particular, since the bidding process reveals the types
of the traders with the lowest values, it ensures that the traders with the highest
values end up with the good even though their types are not fully revealed.

The ability to condition the decision whether to remain active on the dropout
decisions of other traders is good for efficiency reasons, but bad for strategic ones.
This is why the strategies we describe constitute only an approximate perfect

ditionally independent, affiliation between the state and the highest order statistic of traders’
values cannot hold if the number of bidders is random and distributed independently of the state.

2Gresik (1991) has shown that it is impossible to achieve ex-post efficiency using static mech-
anisms in the interdependent value environment with valuation functions linear in traders’ types
and independent type distributions.

3Some buyers who drop out at the final price may also receive units of the good if too many
traders drop out of the bidding at the final price. We discuss this in more detail below.
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Bayesian equilibrium. In particular, sellers may encounter information sets where
they can exploit the possibility that they may be pivotal without taking any sig-
nificant chance of losing a profitable trade. We describe these information sets,
then provide conditions under which the expected payoff associated with pushing
up the trading price becomes arbitrarily small when the number of traders is large.

Our approximate equilibrium supports an outcome which is ex post efficient
with probability 1. This allows us to address some questions that are left open
in the existing literature. For example, Perry and Reny (2006) show that, under
affiliation, the equilibrium price in a double auction converges in probability to
the full information market clearing price. They do not directly address what
happens to the equilibrium allocation, or to the posterior beliefs (both of which
are important in the rational expectations story that they are interested in) when
the number of traders is large but finite. Furthermore, convergence in probability
also leaves open the possibility that unusual arrays of types (i.e. the ones that
occur with a small probability) lead to prices that are far from full information
prices. However, in the ascending-price double auction these issues do not arise.

As we illustrate below by an example, in the absence of affiliation an indirect
mechanism can support an outcome close to a full information or a rational expec-
tations equilibrium only if traders are given an opportunity to respond to the same
price differently in different situations. Our mechanism accomplishes this because
traders, including sellers, make trading decisions after they have observed some
of the decisions of other traders. This feature of our mechanism allows traders to
react in a flexible way to information about the types of the other traders.

At the same time, when the number of traders gets large, traders (almost) lose
their ability to manipulate the trading price. As a result, our equilibrium has a
’rational expectations’ property. Specifically, the trading decision for each trader
is the best outcome that is feasible given the equilibrium trading price, and given
all the information that is revealed along the equilibrium path associated with
the trading process. Traders appear to be making optimal choices in all situations
conditional on information revealed by the final equilibrium trading price and their
own equilibrium outcome.

It is worth noting that models where traders observe the actions of other traders
often provide negative results regarding convergence to equilibrium. The best
example might be Wolinsky (1988) where traders are given repeated opportunities
to observe others’ behavior. Wolinsky shows that this will prevent trade from
occurring at the right price even when there are many traders with almost costless
opportunities to interact.

A similar result in a different setting is provided by Horner and Jamison (2004)
who analyze an infinitely repeated sequence of auctions in which bidders have
private (but unchanging) information about the common value of a good being
sold. Bidders are repeatedly given the opportunity to observe the bids being
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made by others, and could potentially use this information to learn the common
value. They give examples of equilibria in which no private information is ever
revealed. Gottardi and Serrano (2005) analyze a series of models somewhat similar
in structure to the one analyzed in Wolinsky (1988) and show that aggregation
failures are closely related to the traders’ market power. Gottardi and Serrano
(2005) point out that traders know their actions are being observed, and this
provides them with an additional opportunity to manipulate the outcome of the
mechanism in their favor. Their behavior becomes less informative as a result.

The ability to directly manipulate others’ beliefs is a key reason for the failure of
convergence discovered by Wolinsky (1988) and the other authors cited above. One
of the advantages of our mechanism is that the impact of such behavior becomes
small in a large market.

Our paper also contributes to the design of ascending-price auctions and un-
derstanding of their incentive properties. One-sided ascending-price (English) auc-
tions have been studied by Krishna (2003), Izmalkov (2003), Birulin and Izmalkov
(2003) and others. Ausubel (2004) constructs an ascending-bid auction for multi-
ple items. In a context considerably different from ours, Ausubel points out that
an ascending-bid auction may retain efficiency with interdependent values, while a
static one-shot auction does not. This result relates his paper to ours, to the extent
that they both point at the advantages of dynamic ascending-price auctions.

The rest of the paper is organized as follows. In section 2 we show why double
auctions cannot achieve efficiency without affiliation. In section 3 we present our
model. Section 4 contains our main result. In section 5 we discuss the implications.
Section 6 concludes. All proofs are relegated to the Appendix.

2 Double Auctions

First, let us consider why double auctions are restrictive. Suppose that traders’
bids and asks are all monotonically related to their ‘types’. Then any ask price
announced by a seller is equivalent to a contingent plan according to which this
seller agrees to trade if the value of the appropriate order statistic -the m-th lowest
value among m bids and n asks ordered (in increasing order) in a single array- is
above this seller’s ask price. Suppose that this order statistic is equal to p for some
array of types, and it is ex-post efficient for our seller to trade. By the rules of the
double auction, the seller will end up trading under any array of other trader types
which gives rise to a higher value of this order statistic. So if the double auction
supports an efficient outcome, it must be efficient for this seller to trade when
this order statistic has any value higher than p. An increase in the value of this
order statistic will increase the price at which the seller trades, which certainly
makes the seller more willing to trade. However, a higher value of this order
statistic also signals that other traders have higher private types. Under standard
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interdependence assumptions this will mean that the seller will also assign a higher
value to the good, so her opportunity cost of trade will be higher. Some condition
needs to hold to ensure that the former effect outweighs the latter.

The condition that does this in Perry and Reny (2006) is affiliation. In their
formulation, a trader’s value for the good depends on her own type and on some
common quality q. Quality q is unknown and random, and the traders’ types
are distributed identically and independently conditional on q. Let Fq denote the
probability distribution from which each trader’s type is drawn conditional on q.
When the number of traders is very large (infinite), the equilibrium price in the
double auction coincides with the full information market clearing price, and the
latter reveals the actual quality.

Now fix a quality q, and let pq be the corresponding full information price.
Consider a buyer whose type xq is such that he bids pq in the double auction.
Since the double auction price is equal to the full information market clearing
price, the outcome should be ex post efficient. So the buyer of type xq must be
just indifferent between trading and not trading at price pq, and the measure of
the set of traders whose types are higher than xq (who get the good in an ex-post
efficient outcome) must be exactly equal to the measure of the set of available
goods.

Next, consider a lower ‘quality’ q′, i.e. q′ < q. The full information price pq′

corresponding to quality q′, and hence the equilibrium price in the double auction,
must be lower than pq. But the buyer of type xq bids pq irrespective of the actual
quality, which she is uncertain of. So he will win a unit of output at the new price
pq′ .

Hence, to maintain ex post efficiency, the reduction in price from pq to pq′ in the
double auction has to at least compensate the buyer of type xq for the reduction in
the quality of the good from q to q′. This is ensured by the affiliation assumption.
To understand why this is so, note that under affiliation the distribution of types
conditional on q first-order stochastically dominates the distribution of types con-
ditional on q′. Therefore, the measure of the set of traders whose types are above
xq is larger when the quality is q than it is when the quality is q′. So when the
quality is q′, the equilibrium price in the double auction must fall to ensure that
some buyers with valuations below xq bid above this equilibrium price and end up
with the good. Otherwise, the market would not clear, as the set of buyers who
want to purchase the good at the final price would be smaller than the set of sellers
who would like to sell at that price. Precisely, under q′ the price would fall to the
level pq′ at which some type xq′ , xq′ < xq, will be indifferent between trading and
not trading the good of quality q′. Hence, type xq would strictly prefer to buy the
good of quality q′ at pq′ .

Generally speaking, a double auction works well if an increase in quality causes
the mth-lowest order statistic of traders’ types to rise faster than traders’ full
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information values. What follows is a finite example that shows how things can
go wrong. This example will also be used below to illustrate how the ascending
auction procedure resolves this problem.

There are 6 traders. Only one of them is a seller, so this is a simple auction
environment except for the fact that the seller is strategic and privately informed.
Types are commonly known to be integers between 3 and 10. The ex post value
function of trader i is given by

u (xi, x−i) = xi + W

[∑
j 6=i xj

5

]
(1)

where W [x] denotes the ‘whole part’ function, i.e. the largest integer that is less
than or equal to x.

The lowest value that a trader can have in this environment is 6 (when all
traders have type 3), and the highest value is 20 which occurs when all traders
have type 10. Of particular interest are two states of the world corresponding to
the following two type profiles:

State 1: {9, 8, 8, 8, 8, 8}

and
State 2: {9, 10, 10, 3, 3, 3} .

In each of these two states, it is the seller who has type 9. The profiles of traders’
values in these two states are given by

{17, 16, 16, 16, 16, 16}

and
{14, 15, 15, 8, 8, 8}

respectively.
In state 1 all the buyers have high types, which raises the seller’s value because

of interdependence. In state 2, only the seller and the first two buyers have high
types, while the other buyers have the lowest possible types. The full information
market-clearing price can be anything between 16 and 17 in state 1, but must be
equal to 15 in state 2. Importantly, for the outcome of the auction mechanism to
be efficient, the seller of type 9 would need to sell in state 2, but keep the good in
state 1. That is, she needs to sell the good if price does not rise above 15, and to
keep it if a higher price of 16 is reached. Thus, this example has the plausible but
unusual (at least in auction theory) property that the seller’s ’supply’ of the good
is inversely related to price.

Now suppose that the joint distribution of types is such that any trader of type
8 believes that with a very high probability the true state is a permutation of state
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1 i.e., 4 of 5 other traders have type 8 while one trader has type 9. Similarly, a
trader with type 3 or 10 believes that, with a very high probability, the true state
is a permutation of state 2. Finally, any trader of type 9 believes that with very
high probability, the true state is either a permutation of state 1 or a permutation
of state 2, and that each of the two configurations is equally likely. Types are
distinctly not affiliated in this example. A trader whose type rises from 3 to 8
believes that with a very high probability the types of some of the other traders
will rise, while some of them will fall.

The double auction cannot support an efficient outcome in both states 1 and
2. A trader of type 8 believes that her/his value is very close to 16, and is almost
sure that there is another bidder who has this same value and belief. Therefore, in
any equilibrium, a trader of type 8 must bid close to 16 with a high probability. A
trader of type 10 is in a similar position. He believes that his value is very close to
15 and is almost sure that there is another trader with the same value and beliefs.
As a consequence, such trader’s bid must be very close to 15 with high probability.
This argument implies that traders’ bids will not be monotonically increasing in
their types as would be necessary for ex post efficiency.

In particular, the seller will submit the same bid in both states. He could
submit a bid above 16 and keep the good in both states. Alternatively, he could
bid below 15 and sell in both states. Each of these two strategies would produce
ex post inefficiency in one of the two states. Finally, if the seller submits a bid
between 15 and 16 he will sell in the wrong state.

The failure of double auction in this example stems from the fact that a seller
has to make a bid and a trading decision completely independently of the realized
profile of types of the other traders. This problem is mitigated in an ascending
double auction.

3 The Model

3.1 Fundamentals

There are n sellers and m buyers trading in a market. Each seller has one unit
of a homogeneous good, while each buyer has an inelastic demand for one unit
of this good. Trader i’s privately known type, i ∈ {1, ...,m + n}, is denoted by
xi. We assume that xi lies in a compact subset X ⊂ R. Below we will restrict
the set of feasible types X to be finite. The profile of types of all m + n traders
is denoted by x and the profile of traders’ other than i is denoted by x−i. Thus,
x ∈ Xm+n ⊂ Rm+n. When focussing on trader i, we use the notation (xi, x−i) for
x. We use x(k) to denote the kth lowest element of x from the bottom (the value
of the kth lowest order statistic in x) for some integer k ≥ 0, k ≤ m + n. Similarly
x−i(k)

denotes the kth lowest element in the vector x−i. We also use the notation
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x̃i, x̃, x̃−i for trader i’s type, the type profile of all m + n traders and the profile
of types of traders other than i, respectively, when viewed as random variables.

Trader i’s valuation for the good is given by u (xi, x−i). The value function
u (xi, x−i) is assumed to be continuous in xi and non-decreasing in each of its
arguments. Note that all traders have the same value function, with the first
argument of the function denoting the type of the trader her/himself, and the
second argument standing for the profile of the other traders’ types.

One implication of this assumption is that the value function u(.) depends on
the total number of traders m + n, but not on the proportion of sellers or buyers
among the traders. So a trader’s value u (xi, x−i) is the same irrespectively of
whether all the other traders are sellers, or there is only one seller among other
traders, as long as the size of the market remains constant.

In our notation we suppress the dependence of the value function u(.) on m+n,
because this dependence should be clear from the arguments of the function.

The value function in Perry and Reny (2006) is a special case of this. They
assume that the full information value of trader i is given by v(xi, q) where xi is
the trader’s own type, and q is the unobservable quality of the good being traded.
This can be supported as a special case of our formulation by setting

u(xi, x−i) = E[v(xi, q)|(xi, xi)]

as long as v is increasing in both its arguments, and xj and q are affiliated for
j ∈ {1, ...,m + n}.4 When taking expectations, we use the subscript of the ex-
pectation operator to indicate the type whose beliefs are being used to calculate
the expectation, and the conditioning operator to indicate additional information
that this trader type uses when doing the calculation. The variables over which
the expectation is being calculated should be clear from the context.

A buyer’s payoff is equal to her value less the price that she pays for the good.
A buyer gets zero payoff if she does not buy and pays nothing. A seller’s payoff
is equal to the price that she receives less her value. A seller gets zero payoff if
she does not sell and receives nothing. Recall that the first argument of the utility
function always denotes the trader’s own type. Also, let x−i−j denote the profile of
types of traders other than i and j. We make the following assumption throughout:

Assumption 1 (Single Crossing Condition) If xi > xj (where xj is the jth com-
ponent of x−i), then u (xi, xj, x−i−j) ≥ u (xj, xi, x−i−j).

This assumption implies that, starting from any profile of types in which two
traders have the same types, an increase in the type of one of these traders has
more impact on this trader’s value than the same increase in the other trader’s

4Here, the expectation is taken using posterior beliefs about q conditional on the types of
all traders. Affiliation between xj , for all j, and q is needed to ensure that the expectation is
increasing in the type of every trader.
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type. In Perry and Reny (2006) this restriction holds because an increase in xi

improves i’s perception of the quality of the good q just as much as an increase in
xj does, but an increase in xi also improves i’s valuation of every quality.

Assumption 1, along with the assumption that all traders have the same value
function, implies that the trader with the highest type also has the highest value.

The value function is also assumed to possess the following continuity property:

Assumption 2 For any 4 > 0, there is N such that if n + m ≥ N , then∣∣u (xi, xj, x−i−j)− u
(
xi, x

′
j, x−i−j

)∣∣ < 4

for every pair xj, x
′
j ∈ X , for every xi ∈ X and x−i−j ∈ X n+m−2.

This Assumption ensures that when the number of traders is large, the influence of
any single trader’s type on any other trader’s valuation becomes small. However,
it does not imply that the aggregate influence of the profile of the other traders’
types on a trader’s valuation becomes small, nor does it impose any restriction
on the size of the ‘fixed’ effect which adding another trader has on the existing
traders’ valuations. The model of Perry and Reny (2006) satisfies Assumption 2,
because in their model the effect of any trader’s signal on the perception of quality
by other traders diminishes as the number of traders gets large.

The traders’ types are drawn from the joint probability distribution Fmn which
is common knowledge. We assume that Fmn is symmetric5 and that the marginal
distributions of traders’ types are identical and have a finite support which is
independent of m and n, i.e X is finite. For x ∈ X , let x+ denote the next higher
type in X . We make the following full support assumption:

Assumption 3 There exists an ε > 0 such that for any xi ∈ X and any m and
n, PrFmn {x̃i = xi|x̃−i = x−i} ≥ ε for all x−i.

This condition is borrowed from Peters and Severinov (2005) and resembles a con-
dition in Cripps and Swinkels (2006). Among other things, it ensures that all the
conditional expectations that are used in the sequel are well defined. Conditional
independence with a common and full support (as in Perry and Reny (2006)) is
consistent with this assumption. Note that we do not impose any of the affiliation
assumptions used by Perry and Reny (2006).

5This symmetry assumption, like the assumption that all traders have the same valuation
function, is used to construct an equilibrium in which all traders use the same bidding rule. The
analytical complexities associated with asymmetric bidding rules in the interdependent value
environment are daunting, so we do not know whether our results can be extended to asymmetric
traders with different prior beliefs. Peters and Severinov (2005) show that in the private value
case, there exists an equilibrium in which buyers use a common bidding rule similar to the one
constructed in this paper, even without common priors.
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3.2 Ascending-Price Double Auction Mechanism

Below we provide the description of our ascending-price double auction mechanism.
In the course of this auction, all traders (sellers included) bid for the right to own
(keep) one of the n objects being auctioned. The auction starts at a price equal to

q = E
[
u (x̃i, x̃−i) |x̃i = x̃−i(1) = · · · = x̃−i(m)

= x
]

(2)

where x is the lowest type in the set X 6

In words, the lowest price q is defined by the condition that a bidder with
the lowest type would just be willing to pay q if she wins a unit at the auction.
This bidder will win a unit only if at least m of the other bidders have this same
type. So, q is computed as an expectation of the trader’s value conditional on the
values of the m lowest elements in the vector of types of the other traders being
equal to x, which means, of course, that all the other types are at least this high.
Accordingly, in the computation of q we condition on the lowest m elements of x−i

being equal to x and take an expectation with respect to the other n− 1 elements
of x. Similarly, in the sequel when we calculate the expected value of a trader at a
certain price, we condition on the values of the m lowest trader types and take an
expectation with respect to the other n− 1 types conditional on them lying above
the corresponding critical level. This method is analogous to the one used in the
analysis of single-unit ascending auctions.

Thus, at the start of our auction all traders simultaneously declare whether
they want to remain active at price q, or whether they want to drop out of the
bidding at this price and become inactive. If the number of active bidders exceeds
the number of units for sale, the auctioneer raises the price according to a formula
that will be described below, and this process is repeated. The price increases until
the number of active bidders is less than or equal to the number of units of the
good for sale.7 All trades are executed at the price attained at this terminal point.
An active buyer is given a unit of the good at this trading price. An inactive seller
is paid the trading price in exchange for her unit of the good. Active sellers leave
the market without trading. If the number of active traders is below the number of
units for sale, the unsold units are randomly awarded to the bidders who dropped
out of the bidding at the final trading price.

6In (2) and in similar formulas below we use (x̃i, x̃−i) to denote the random type profile of all
traders. The expectation is taken with respect to this type given its prior distribution Fmn and
additional information upon which the expectation is conditional.

7The mechanism could be modified to allow inactive traders to re-enter the bidding as in
Izmalkov (2003). Since the equilibrium that we construct achieves an efficient outcome without
reentry and, moreover, reentry would never be optimal for a trader i even if it was allowed -
provided that other traders use the equilibrium strategies - we assume re-entry away to simplify
the presentation.
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The history of the game at any point in the auction consists of a current price
p, the list of traders who have dropped out of the bidding and the prices at which
they have dropped out. Any history of the game generates bidders’ beliefs which
consist of two components: as assignment of types to the traders who have dropped
out and a probability distribution over the type profiles of active traders. We use a
recursive procedure to construct these two components of beliefs. This procedure
is described in Condition 1 below. Note that the assignment of types to the players
who have dropped out, which is described in Condition 1, will also be used in the
auction price adjustment rule.

Condition 1 Suppose that history h is such that the current auction price is equal
to p and k ≥ 0 bidders have dropped out, and these bidders have been assigned types
x̂h ≡ {x̂1, . . . , x̂k} ordered from the lowest to the highest. Any bidder who drops
out at history h is assigned type x̂p ∈ X where x̂p satisfies the following equation:

E
[
u (x̃i, x̃−i) |x̃−i(1) = x̂1, . . . , x̃−i(k)

= x̂k, x̃i = x̃−i(k+1)
= · · · = x̃−i(m)

= x̂p
]

= p.

(3)
If a bidder remains active after history h, then her type is at least as large as x̂p.

So, an active player i’s beliefs about the types of other active players are char-
acterized by probability distribution derived from the prior Fmn using Bayes rule
and conditioning on the types assigned to the traders who have dropped out, on the
cutoff x̂p and on player i’s true type.

An inactive player j’s beliefs about the types of active players are characterized
by probability distribution derived from the prior Fmn using Bayesian rule and
conditioning on the types assigned to the traders who have dropped out, except for
the type assigned to j according to (3), on the cutoff x̂p and on player j’s true
type.

Thus, the key aspect of beliefs formed according to Condition 1 is the assignment
of types to inactive traders who have dropped out. Specifically, after any history
all traders (except the trader whose type is the subject of beliefs) believe that with
probability 1, an inactive trader with order number i (i.e. the one who was the i-th
to drop out) has type x̂i -which is computed according to (3) given the history h′

at which the trader had dropped out and the beliefs corresponding to that history.
Note that by the monotonicity of the utility function, x̂p > x̂j for all j = 1, ..., k.

Further, since the profile of types (x̃i, x̃−i) used to compute (3) is such that x̃−i(m)
=

x̂p, the n−1 highest elements of x̃−i weakly exceed x̂p. This fact is implicitly taken
into account in the computation of the expectation on the left-hand side of (3).

It is also important to note that in our auction the solution x̂p to equation (3)
will lie in X after any possible history. That is, inactive players will always be
assigned types that occur with a positive probability according to the prior Fmn.
This follows immediately from the price adjustment rule in our auction which
we describe below. Specifically, the auction price is adjusted using a recursive
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dynamic procedure defined by Condition 1 and the formula (3). To see how this
procedure works, suppose that l bidders drop out and become inactive at price p
after history h. Each of these (now inactive) bidders is assigned type x̂p and an
order number between k + 1 and k + l. The ordering is arbitrary. Thus, x̂i = x̂p

for i = k + 1, ..., k + l. If the number of remaining active bidders is still strictly
higher than n (i.e. there are more active bidders than there are goods for sale),
the price is adjusted upwards to p+ which satisfies

E
[
u (x̃i, x̃−i) |x̃−i(1) = x̂1, . . . , x̃−i(k+l)

= x̂k+l, x̃i = x̃−i(k+l+1)
= · · · = x̃−i(m)

= x̂p+
]

= p+.

(4)
Recall that x̂p+ stands for the next element of the grid X which is higher than x̂p.
If enough bidders drop out at p+ so that the number of remaining active bidders
no longer exceeds the number of units for sale, then the auction ends at this price.
Otherwise, the described price adjustment procedure is performed again. If no
bidder drops out at p+, then the price is raised to the next level p++ which is given
by the same expression as in (4) except that x̂p+ is replaced by the next element
of the grid (x̂p+)

+
, etc.

Thus, our price adjustment rule requires that after any possible history h, the
auctioneer sets new price p+ to satisfy (4) for the assignment of types of inactive
players {x̂1, x̂k+l} corresponding to h. Comparing (3) and (4), it is a tautology to
say that with p+ on the right-hand side of (3) and with the assignment of inactive
players’ types {x̂1, x̂k+l}, the solution to (3) is x̂p+. But x̂p+ lies in X by definition.
Also, by (2), the solution to (3) at the lowest price q and null history is x ∈ X .
So, indeed, the solution to equation (3) will always lie in X .

As one can see, the type profile {x̂1, . . . , x̂k} assigned to the traders who have
dropped out at history h plays a central role in our analysis. The price adjust-
ment rule relies exclusively on it. Moreover, given the price adjustment rule, the
symmetry of all traders and the monotonicity of the utility function u(.), there is
a one-to-one correspondence between the set of histories in our game and the set
H of all tuples {x̂1, . . . , x̂k, p}, k ≤ m, representing the profile of types assigned
to traders who have dropped out from the auction and the current price. It is
straightforward to show this via an iterative application of (3).

So, to simplify the exposition, in the sequel we will with a slight abuse of
terminology refer to the tuple {x̂1, . . . , x̂k, p} corresponding to h as history h.
Finally, let H be the set of all such tuples with k ≤ m. A strategy for each bidder
is a map from H into the set of probability distributions over the set {a, i} (where
a stands for active, and i stands for inactive). Altogether, our price adjustment
procedure, the specification of histories and the traders’ strategy sets define a
dynamic game of incomplete information. Our solution concept for this game is
as follows.

Definition 1 A δ-perfect Bayesian equilibrium is a set of strategies and beliefs
such that no trader can increase his or her payoff by more than δ by deviating
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from her equilibrium strategy given her beliefs, and such that beliefs satisfy Bayes
rule on the equilibrium path.

4 A Strategy Rule for the Ascending-Price Dou-

ble Auction

We are now ready to describe an equilibrium strategy rule for the traders in this
auction mechanism. For every history h, a strategy rule specifies whether or not
an active trader should continue bidding. To describe our equilibrium strategy
rule we start with the following definition:

Definition 2 The willingness to pay of an active trader i of type xi after history
h = {x̂1, . . . , x̂k, p} is equal to:

E
[
u (x̃i, x̃−i) |h; x̃i = xi, x̃−i(k+1)

= · · · = x̃−i(m)
= x̂p

]
(5)

where x̂p is the solution to (3) given h and conditioning on h in the expectation
means conditioning on the event x̃−i(1) = x̂1, . . . , x̃−i(k)

= x̂k.

An active trader’s willingness to pay is her expected value conditional on the
event that just enough traders drop out at the current price p so that the auction
ends. Note that, by the full support assumption, the expectations in this definition
are always well-defined.

Definition 3 The strategy σ∗ is defined as follows: a bidder remains active (con-
tinues bidding) after history h = {x̂1, . . . , x̂k, p} if his willingness to pay is strictly
higher than the current price p, and becomes inactive otherwise.

Observe that, according to σ∗, after history h = {x̂1, . . . , x̂k, p} any active bidder
whose type is strictly higher than x̂p will continue bidding at price p.

We would like to characterize the outcome of the auction when traders use the
strategy σ∗ as a function of the traders’ type profile. To this end, we introduce
the notion of perceived value.

Definition 4 Consider some array of traders’ types x = (x1, . . . , xn+m) and sup-
pose that trader i has the rth lowest type in this array. Let trader i’s perceived
value vi[x] under the array x be equal to

E
{

u(x̃i, x̃−i)|x̃−i(1) = x(1), . . . , x̃−i(r−1)
= x(r−1), x̃i = x̃−i(r)

= · · · = x̃−i(m)
= xi

}
if r ≤ m

(6)

E
{

u(x̃i, x̃−i)|x̃−i(1) = x(1), . . . , x̃−i(m)
= x(m), x̃i = xi

}
if r > m. (7)

Also, let v(m)[x] (or simply v(m) when the array of types is clear from the context)
be the perceived value of the trader with the mth lowest type in x.
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Trader i’s perceived value is his expected valuation of the good, conditional either
on his knowledge of the m lowest types in the array x, or on his knowledge of the
types lower than his and the estimate that the m-th lowest type in the array x is
equal to his type xi. By construction, v(m)[x] is the mth-lowest such value. Our
main theorem can now be stated.

Theorem 1 Let δ > 0 and suppose that Assumptions 1-3 hold. Then there is
some N such that there exists a δ-perfect Bayesian equilibrium where all traders
use the strategy rule σ∗ if the number of sellers and hence the number of goods
being sold is larger than N . For each array of types x that occurs with a positive
probability, all trades occur at price v(m)[x]. A trader whose type is above x(m) will
win a unit of the good for sure, a trader whose type is below x(m) will not win a unit
of the good. A trader whose type is x(m) may or may not win a unit - in either case
his expected value for the good will be the same as the equilibrium trading price.

Proof: See the appendix.
Two observations are in order at this point. First, in the proof we show that

the traders with the n highest perceived values always end up with the good. By
symmetry and the single-crossing Assumption 1, these are the traders with the n
highest types. So the equilibrium outcome of the mechanism is ex post efficient
with probability 1.

The second observation is that the traders’ bidding decisions on the equilibrium
path completely reveal the m lowest types of traders. So once the auction ends,
the expected value of the good for a trader i who ends up with a unit of the good,
conditional on all information revealed by the bidding process to this trader, is
equal to his perceived value vi[x]. So the traders who consume the good have
perceived values at least as high as the trading price v(m)[x]. A trader who ends
up without the good has expected value that is at least as high as her perceived
value. However, his expected value is monotonic in his own type and therefore
cannot exceed v(m)[x]. Consequently, the equilibrium outcome is the best one for
every trader conditional on the equilibrium price and the information that traders
have at the end of the bidding process. We refer to this as the rational expectations
property.

However, unlike in a standard rational expectations equilibrium where traders
only condition their beliefs on price, the traders’ beliefs at the end of the bidding
process are conditioned on all the information revealed in the course of bidding.
The ascending auction procedure we study here can never reveal the highest trader
types, so the equilibrium trading price will not generally be fully revealing, and in
particular the equilibrium trading price will not coincide with the full information
market clearing price.8

8The equilibrium price in the double auction described in Perry and Reny (2006) does not
coincide with the full information price in this sense either. They show that the equilibrium price
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Yet since our rational expectations property holds uniformly for all trader types,
it holds for every trader under any array of types that generates the same equilib-
rium outcome for the trader. Thus the ascending double auction has a stronger
rational expectations property: the outcome of the mechanism will appear to be
the best one for each trader conditional on the information conveyed by her own
trading outcome (i.e., the final trading price and whether or not she has won the
good). We show by an example below that this property may not hold if a trader
conditions her belief only on information conveyed by the final price.

5 Discussion

In the example studied in section 2, our bidding rule σ∗ supports ex post effi-
cient trade in the problematic states that we described above. Recall that in our
discussion we have focused on two type profiles/states of the world:

State 1: {9, 8, 8, 8, 8, 8}
State 2: {9, 10, 10, 3, 3, 3}

with full information values equal to {17, 16, 16, 16, 16, 16} and {14, 15, 15, 8, 8, 8}
in states 1 and 2 respectively.

Given the utility function (1) and the assumption that the lowest trader type is
3, we can use equation (2) to compute the starting (reserve) price in our mechanism.
It is equal to the lowest full information value of 6 which occurs when all traders
have type 3.

Let us, first, focus on state 2 with the array of types {9, 10, 10, 3, 3, 3}. All
bidders need to compute the type assigned to any bidder who drops out at price
6. This type is given by the solution to (3), and is equal to 3. At this price,
the seller (whose type is 9) and the buyers whose types are 10 have willingness
to pay exceeding 6. However, the three buyers with types equal to 3 would drop
out immediately according to σ∗. Successive application of the price adjustment
rule causes the price to rise to 14. At price 14, the seller (whose type is 9) would
drop out because her willingness to pay no longer exceeds the current auction
price. The two high-value buyers with types 10 will then continue to bid until the
auction price reaches 15, at which point both of them will drop out. One of them
will be chosen at random to trade. Hence, the final trading price will be equal to
the full information market clearing price 15.

Now let us consider state 1. Again, bidding will start at price 6. At this point,
the seller’s willingness to pay is 12, while the buyers’ willingness to pay is 11. Each
trader’s willingness to pay (which changes as the price increases) remains above the
price and all traders remain active, until the price reaches 16. At this price, each

in the double auction will be close to the full information price with high probability.
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buyer’s willingness to pay is also 16. So, all buyers will drop out of the bidding at
16 and will be assigned type 8. The seller, as the only trader who remains active
at this price, wins the auction and ends up keeping the good. Again, the final
trading price is equal to the full information market clearing price.

The seller’s “odd” desire to keep the good when the price is high and trade it
when the price is low is accommodated by the fact that the seller can reserve his
decision whether or not to remain active when the price exceeds 15 until after he
observes the bidding decisions of the other traders. When he observes three buyers
drop out at price 6, he concludes that there is no point holding out for a high price
once bidding reaches 15. When all buyers continue to bid until the price reaches
15, the seller concludes that the value of the good is even higher, and bids more
aggressively to hold on to it.

The same example, but with a different state of the world, can be used to
illustrate why σ∗ is only an approximate equilibrium and why we need a large
number of sellers. For example, in the state

{7, 7, 3, 3, 3, 3}

the trading price is 10 if traders use σ∗. When the auction price reaches 10, both
the seller and the buyer of type 7 have to decide whether to continue bidding.
According to σ∗, both of them should drop out at price 10. If they do so, the seller
may or may not sell.

The problem is that the seller knows that he is pivotal when the price reaches
10, since at this point only he and another buyer are active. If the seller drops out
at this point, the process ends and he earns zero profit. If he continues bidding,
there are two possibilities. One is that the buyer will drop out, which will happen
if the buyer’s type is 7, as in the current type profile. The seller will then win the
auction and earn zero profit. The other possibility is that the buyer will remain in
the bidding -which would happen if the buyer’s type is 8 or greater. In that case,
the price will rise to at least 12 (by formula (4)). The seller might win the auction
at price 12 if the buyer drops out, but this does not create a problem because her
surplus is zero in that case, just as it is if he drops out at price 10. Alternatively,
if the seller drops out at price 12 before the buyer does, the seller will get a higher
price from a buyer - whose type in this case must be at least 8. So dropping out
of bidding at price 10 is suboptimal for the seller.

In this example, the expected gain to the seller from continuing to bid is sig-
nificant. However, when the number of sellers and hence the number of goods
being auctioned is large, an active seller becomes pivotal when there are exactly n
other active traders each of whom has a willingness to pay exceeding the current
price. When n is large, the full support Assumption 3 guarantees that with a high
probability at least one of the other active bidders has willingness to pay equal
to the current price. This makes it very unlikely that the seller can prolong the
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auction by continuing to bid. This also explains why we only need the number of
sellers n to be large (but not the number of buyers m) for Theorem 1 to hold.

We can also use this example to illustrate the rational expectations property
of our mechanism. This property was described in the previous section. Consider
the outcome in state 1 where the profile of types is {9, 8, 8, 8, 8, 8}. When all
the buyers drop out at price 16, the seller believes that each of the buyers has
type 8. Bidding ends and the seller fails to trade. Ex post, the fact that all the
buyers dropped out simultaneously at price 16 reveals the true state to the seller.
Conditional on this belief about the state, the seller’s demand correspondence at
price 16 consists of only one outcome, not trading, which is what happens in the
auction. So the outcome is in the seller’s ‘demand’ correspondence conditional on
all the information the outcome reveals. In state 2 where the profile of types is
{9, 10, 10, 3, 3, 3}, the seller also learns the state once bidding ends. Conditional
on this information he would prefer to trade at price 15. Once again, the outcome
is in his demand correspondence given the price and posterior beliefs.

However, it would be wrong to think that the seller can choose the best out-
come if she conditions her decision only on information revealed by price. For,
consider the states {8, 7, 7, 7, 7, 7} and {8, 9, 9, 3, 3, 3} which may also arise in the
example which we have considered. Recall that a trader’s utility function is equal

to u (xi, x−i) = xi +
[∑

j 6=i xj

5

]
, and so the full information values in these two states

are {15, 14, 14, 14, 14} and {13, 14, 14, 9, 9, 9}, respectively. The equilibrium trad-
ing price predicted by Theorem 1 is 14 in both states but the seller keeps the good
in the first state and sells in the second. Our ascending-price auction mechanism
can deliver this outcome, because the seller learns a lot more about the types of
the others in the course of bidding. In contrast, the described outcome would be
infeasible in a static rational expectations equilibrium where the seller only gets
to see the price.

6 Conclusions

We have studied an ascending-price double auction mechanism and provided a
strategy rule which constitutes a δ-perfect Bayesian equilibrium for this mecha-
nism when the number of sellers is large enough. To the best of our knowledge,
dynamic double auctions have not yet been studied in the literature. The allo-
cation supported by this equilibrium in our mechanism is ex post efficient. This
property holds even when the types of the traders are not affiliated, so our mecha-
nism delivers an efficient outcome in cases where a standard double auction would
not. This is so because in our mechanism traders acquire information about the
types of the other traders in the course of the bidding.

The equilibrium we describe is only an approximate equilibrium. It is diffi-
cult to say whether there is a way around this problem. The same property of
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the ascending-price mechanism that supports the revelation of information in the
course of bidding also allows sellers to realize whether they are pivotal and attempt
to manipulate the price. When the market is large, there is little for sellers to gain
from this information, so their incentive to deviate becomes arbitrarily small.

7 Appendix - Proof of Theorem 1

The proof is provided via a series of Lemmas. Lemma 1 shows that the traders’
equilibrium beliefs are consistent with strategy profile σ∗, i.e. are derived by ap-
plying Bayes rule on the path of the game where all traders use strategy σ∗.

Lemma 2 shows that the traders who follow the strategy σ∗ behave as if their
valuations are equal to their perceived values defined by (6) or (7).

Lemma 2 allows us to characterize the outcome of the auction when all but
one trader follow the strategy σ∗, and the remaining trader follows an arbitrary
strategy. This is done in Lemmas 3-5. An immediate implication of this is the
characterization of the auction outcome when all traders follow σ∗, as stated in
Theorem 1.

Finally, we use this characterization to complete the proof in Lemma 6. This
Lemma shows that for any δ, no trader can gain more than δ by deviating from
the strategy σ∗, if all other traders also follow this strategy and the number of
sellers is large enough. The argument consists of two parts. First, we show that
buyers never gain by deviating from σ∗, as long as they hold beliefs described in
Condition 1. Sellers, on the other hand, can increase their payoffs by deviating
from σ∗ in some information sets. So the second part of the Lemma shows that
this gain becomes arbitrarily small as the number of traders becomes large.

7.1 Beliefs

Recall that the traders’ beliefs in the ascending-price double auction are determined
by the prior type distribution and observations of the dropout decisions of the
other traders. Precisely, the beliefs are constructed recursively using the procedure
described in Condition 1 of section 2. Our first result establishes the necessary
consistency of these beliefs with strategy σ∗.

Lemma 1 The traders’ beliefs constructed according to Condition 1 are consistent
with all traders using the strategy σ∗.

Proof: We need to show that the traders’ beliefs constructed according to Condi-
tion 1 satisfy Bayes rule after any history that occurs with a positive probability
on the path of the auction, if all traders use the strategy σ∗. Take any such history
{x̂1, ..., x̂k, p}. According to σ∗, an active trader i drops out after this history if
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and only if her willingness to pay (5) after this history is less than or equal to p.
Comparing (3) and (5), observe that after history {x̂1, ..., x̂k, p} trader i’s willing-
ness to pay is less than or equal to p if and only if xi ≤ x̂p, where x̂p solves (3)
for this history. In fact, if xi < x̂p, then the price adjustment rule in the auction
implies that trader i using strategy σ∗ would have dropped out at a price below p.

So, Bayes rule implies that the type of a trader, who uses σ∗ and drops out
(remains active) after history {x̂1, ..., x̂k, p}, is exactly equal to (greater than) x̂p.
The beliefs formed according to Condition 1 prescribes exactly this. So, the beliefs
are consistent. Q.E.D.

In the rest of the proof, we will employ the following notion:

Definition 5 Say that i believes that the array of types x−i is possible after history
h if the beliefs given by Condition 1 put a positive probability on x−i.

Significantly, if h = {x̂1, ..., x̂k, p} and i thinks that the array of types x−i is
possible, then the following is true. If i is active (inactive, i.e. has dropped out)
at history h, then x−i(k′) = x̂k′ for all k′ ∈ {1, ..., k} (for all k′ ∈ {1, ..., k} except
for k′ s.t. x̂k′ is assigned to i). This fact will be used below several times.

7.2 Traders Behavior

The following lemma provides a result that is central to the logic of the proof of
the theorem. Fix an array of types (x1, . . . , xm+n) ≡ (xi, x−i) and calculate the
corresponding array of perceived values (v1, . . . , vm+n) defined by (6) or (7). Then
trader i with type xi, who uses σ∗ and believes that: (i) other traders follow σ∗;
(ii) the profile of types x−i is possible, will act just as if he had private value equal
to vi(x1, . . . , xm+n). If trader i deviates from σ∗, then she acts in the same way as
a trader with some type x′i following σ∗. So, trader i can figure out the impact of
his deviation by calculating the new array of perceived values associated with the
array of types (x1, . . . , x

′
i, . . . , xm+n) then applying σ∗ to obtain the new outcome.

Lemma 2 Suppose that the beliefs of all traders satisfy Condition 1. Take some
history h1 = {x̂1, . . . , x̂r, p}, r ≤ m, and let x−i be an array of types of traders
other than i that i believes is possible conditional on the history h1. Then there is
x′i such that each active trader j’s (j 6= i) willingness to pay in h1, given the array
of types x−i, is larger than the price p associated with h1 if and only if trader j’s
perceived value under the array of types (x′i, x−i) is larger than p. If i is active in
h1, then x′i = x−i(m)

. Otherwise, x′i ≤ x−i(m)
.

Proof: As pointed out after Definition 5, since trader i believes that the type
profile x−i is possible after history h1 = {x̂1, ..., x̂r, p}, x−i must be consistent with
this history. This implies the following. If i is active (inactive) at history h1,
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then x−i(k) = x̂k for all k ∈ {1, ..., r} (for all k ∈ {1, ..., r} except for ki s.t. x̂ki is
assigned to i) and x−i(k) ≥ x̂p for all k ∈ {r+1, ...,m+n−1} (k ∈ {r, ...,m+n−1}),
where x̂p solves equation (3) for history h1.

We will use this to replace x̂k with x−i(k) in the computation of a trader’s
willingness to pay. In particular, any active trader j’s beliefs about the type
profile of traders other than i after history h1 are given by {x̂1, ..., x̂r} and, hence,
by {x−i(1), ..., x−i(k)} if i is active at h; or by {x̂1, ..., x̂k} \ x̂ki and, hence, by
{x−i(1), ..., x−i(k)} \ x−i(ki) if i is inactive at h.

Let us now set x′i. If i is active at h1, let x′i = x−i(m)
. If i is inactive, we set

x′i = x̂ki , where x̂ki is the type which i was assigned according to equation (3) in
Condition 1 when he became inactive. Note that in the latter case, x̂ki ≤ x̂p ≤
x−i(m), as claimed in the statement of the Lemma.

“Only if” Part: If active trader j’s willingness to pay after history
h1 is larger than p, then j’s perceived value under the array of types
(x′i, x−i) is larger than p.

Consider some trader j with type xj who is active after history h1. Then j’s
willingness to pay at this point is given by:

E
[
u (x̃j, x̃−j) |h1; x̃j = xj, x̃−j(r+1)

= · · · = x̃−j(m)
= x̂p

]
(8)

where x̂p is defined by the solution to (3), i.e. it satisfies

E
[
u (x̃j, x̃−j) |h1; x̃j = x̃−j(r+1)

= · · · = x̃−j(m)
= x̂p

]
= p. (9)

By assumption, (8) is larger than p. Since the utility function is increasing in
trader’s type, it follows that xj > x̂p ≥ x̂r. We will make use of this inequality
below.

Now, let us compute trader j’s perceived value under the profile of types
(x′i, x−i). Let (x′i, x−i)(k) denote the k-th lowest value in the vector (x′i, x−i) and
take t such that xj = (x′i, x−i)(t). Next, let t′ = min{t,m} and x′j = (x′i, x−i)(t′).
Then by Definition 4, j’s perceived value is equal to

E
[
u (x̃j , x̃−j) |x̃j = xj , x̃−j(1) = (x′i, x−i)(1), . . . , x̃−j(t′−1)

= (x′i, x−i)(t′−1), x̃−j(t′) = · · · x̃−j(m) = x′j

]
.

(10)

Note we have defined x′i in such a way that for all k ∈ {1, ..., r}, (x′i, x−i)(k) = x̂k.
Since xj = (x′i, x−i)(t) and, as observed above, xj ≥ x̂p ≥ x̂r, it follows that
t ≥ r. Since m ≥ r also, we have t′ ≥ r. Also, as pointed above, since trader
i believes that the type profile x−i is possible at history h1, x−i(k) ≥ x̂p for all
k ∈ {r + 1, ...,m + n − 1} if i is active (k ∈ {r, ...,m + n − 1} if i is inactive) at
h1. So, given the way we have defined x′i, (x′i, x−i)k ≥ x̂p for all k ≥ r + 1 and, in
particular, x′j ≥ x̂p. Given the monotonicity of the utility function, we conclude
that j’s perceived value in (10) is exceeds the following:[

u (x̃j , x̃−j) |x̃j = xj , x̃−j(1) = x̂1, . . . , x̃−j(r)
= x̂r, x̃−j(r+1) = · · · = x̃−j(m) = x̂p

]
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= E
[
u (x̃j, x̃−j) |h1; x̃j = xj, x̃−j(r+1)

= · · · = x̃−j(m)
= x̂p

]
.

The last expression is trader j’s willingness to pay.
“If” Part: If active trader j’s willingness to pay in h1 is less than or

equal to p, then her perceived value under the array of types (x′i, x−i) is
also less than or equal to p.

Recall that trader j’s willingness to pay in h1 = {x̂1, . . . , x̂r, p} is given by (8)
where x̂p satisfies (9). So, by monotonicity of the value function, xj ≤ x̂p. Recall
that x′i was defined in such a way that x̂k = (x′i, x−i)(k) for all k ∈ {1, ..., r}. Using
this and the fact that xj ≤ x̂p, we obtain:

E
[
u (x̃j, x̃−j) |h1; x̃j = xj, x̃−j(r+1)

= . . . = x̃−j(m)
= x̂p

]
≥

E
[
u (x̃j, x̃−j) |x̃j = xj, x̃−j(1) = min{xj, (x

′
i, x−i)(1)}, . . . , x̃−j(m)

= min{xj, (x
′
i, x−i)(m)}

]
.

The expression on the left-hand side (right-hand side) is equal to j’s willingness
to pay (perceived value). So, j’s perceived value is also no larger than p. Q.E.D.

7.3 The outcome associated with σ∗

Let h = {x̂1, . . . , x̂r, p} be a history and x−i be a set of types that i thinks is
possible in h. Let h′ = {x̂1, . . . , x̂r′ , p

′} be a successor to h that will be realized
when the traders other than i have a profile of types x−i and follow strategy σ∗

while i follows some strategy. By Lemma 2, when the profile of types of traders
other than i is x−i, there is a type x′i such that bidder i can predict whether trader
j will choose to continue bidding after history h′ by calculating j’s perceived value
under (xj, x

′
i, x−i−j) and comparing it to p′, for all j 6= i. This provides a simple

necessary and sufficient condition for bidding to end at price p′ when traders other
than i are using σ∗: the number of traders whose perceived values exceed p should
not be higher than n.

Recall that vi[x] is trader i’s perceived value under the array of types x of m+n
traders and v(m)[x] is the perceived value of the trader with the mth lowest type in
x.

Lemma 3 Let h be a history and x−i be a profile of types that trader i believes is
possible after history h. Suppose that in the continuation following h all traders
other than i use strategy σ∗ and form beliefs according to Condition 1. Suppose
also that bidding ends after some history h′ = {x̂1, . . . , x̂m, q} and that trader i
wins a unit of output. Then q cannot exceed v(m)[x−i(m)

, x−i].

Proof: The proof is by contradiction, so suppose that q > v(m)[x−i(m)
, x−i]. Since

all traders other than i use strategy σ∗ and form beliefs according to Condition
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1, there must be some predecessor history h′′ = {x̂1, . . . , x̂r, q
′′} of h′ with r < m

from which the price is increased to q and x̂q solves

E
[
u (x̃i, x̃−i) |h′′; x̃i = x̃−i(r+1)

= · · · = x̃−i(m)
= x̂q

]
= q.

Since r < m and since i is active at h′, at least n + 1 trader types in the array
of types (x−i(m), x−i) are at least x̂q. Each of these traders has a willingness to
pay of at least q which strictly exceeds v(m)[x−i(m)

, x−i]. By Lemma 2 each of
these traders has a perceived value that strictly exceeds v(m)[x−i(m)

, x−i]. But by

definition v(m)[x−i(m)
, x−i] is the mth lowest perceived value, so at most n perceived

values can strictly exceed v(m)[x−i(m)
, x−i], a contradiction. Q.E.D.

Lemma 4 Suppose that in the continuation after history h all traders other than
trader i use strategy σ∗ and form beliefs according to Condition 1, the type profile
of traders other than i is given by x−i and i thinks that profile x−i is possible after
history h. Also, suppose that trader i is awarded a unit of the good at price q when
the auction ends. Let x′i = x−i(m)

. Then q ≥ v(m)[x
′
i, x−i].

Proof: The proof is by contradiction, so suppose that the trading price at the end
of the auction is equal to p s.t. p < v(m)[x

′
i, x−i]. Since all traders other than i

are using strategy σ∗, by Lemma 2, those of them whose perceived values exceed
v(m)[x

′
i, x−i] will all remain active at price p. There are at least n such traders. So

the auction can end at p only if buyer i drops out, but in this case i will not win
the good. Q.E.D.

Lemmas 2-4 imply the following result:

Lemma 5 Suppose that the type profile of traders other than i is given by x−i,
the history of the game h = {x̂1, ..., x̂r, p} is such that trader i believes that the
type profile x−i is possible, and in the continuation after h all traders other than i
follow the strategy σ∗ and form beliefs according to Condition 1. Then

1. If trader i drops out of the bidding so that all traders believe that i’s type is
x′i, then all trades will occur at price v(m)[x

′
i, x−i].

2. Suppose that trader i is active at h, and also follows σ∗ and forms beliefs
according to Condition 1 in the continuation. Then i will win a unit of the
good at price v(m)[xi, x−i], if xi > x−i(m), and will not win the unit of the
good if xi < x−i(m).

Proof: Since at history h = {x̂1, ..., x̂r, p} trader i thinks that the array of
types x−i is possible, we have x̂k = x−i(k) for all k ∈ {1, ..., r}. Further, since
all players other than i follow σ∗ in the continuation, at any successor history
h′ = {x̂1, ..., x̂r′ , p

′} we have: (i) x̂k = x−i(k) for all k ∈ {1, ..., r′} s.t. x̂k is not
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assigned to i; (ii) i thinks that x−i is possible. This is so because the players’ be-
liefs constructed according to Condition 1 allow them to infer correctly the types
of players who drop-out while following σ∗.

To prove Part 1, consider any successor history h′′ = {x̂1, ..., x̂r′′ , p
′′} of h in

which agent i has dropped out and has been assigned type x′i. By Lemma 2, it
follows that an active trader j’s willingness to pay in h′′ exceeds the current price
p′′ if and only if her perceived value v[xj, x

′
i, x−i−j] exceeds p′′. Therefore, trader j

drops out at price p such that her perceived value v[xj, x
′
i, x−i−j] is equal to p.

By Assumption 1, for any two traders j and k who remain active after trader
i has dropped out, v[xj, x

′
i, x−i−j] > v[xk, x

′
i, x−i−k] if and only if xj > xk. So, in

the continuation of h′′ trader k drops out when j is still active. Since the auction
ends as soon as m traders drop out, it follows that the auction will end at price
v(m)[x

′
i, x−i].

Next, we prove part 2. So suppose that, as all other traders, trader i also
follows σ∗ in the continuation of h. If xi < x−i(m), then i’s perceived value is less
than the perceived value of at least n other active traders. So, by Lemma 2, i will
drop when at least n other traders remain active and will not trade.

If xi > x−i(m), then i’s perceived value is greater than the perceived value of
at least m other traders. So, by Lemma 2 those traders will drop out while i will
remain active, and i will get a unit of the good. By Lemmas 3 and 4, the final price
at which the auction will stop will be equal to v(m)(x−i(m), x−i). But notice that
by definition of perceived value (see Definition 4) v(m)(x−i(m), x−i) = v(m)(xi, x−i)
when xi > x−i(m). Compare expressions (6) and (7) to see this. Q.E.D.

As an immediate implication of Lemma 5, we can characterize the outcome of
the auction when all traders use the strategy σ∗ from the beginning. Suppose that
this is so and that the type profile is given by x. Then, by Lemma 5, all trades
will occur at price v(m)[x]. A trader whose type is above x(m) will win a unit of
the good for sure, a trader whose type is below x(m) will not win a unit of the
good. A trader whose type is x(m) may or may not win a unit - in either case his
expected (i.e. perceived) value for the good will be the same as the equilibrium
trading price. This establishes the first part of Theorem 1.

So, to complete the proof of the Theorem we only need to show that there is
no profitable deviation from σ∗. This is done in the following Lemma:

Lemma 6 If Assumptions 1-3 hold, and the number of sellers n is large enough,
then the strategy rule σ∗ for all players, and belief system constructed according to
Condition 1 constitute a δ-perfect Bayesian equilibrium.

Proof: Buyer’s Part. Let us establish that a buyer cannot gain by deviating
from σ∗. Let x−i be an array of types that buyer i thinks is possible after some
history. If all traders follow σ∗ in the continuation and xi > x−i(m)

then, by Lemma
5, i will trade at price v(m)[xi, x−i] under this array of types. If i deviates from
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σ∗ and follows some alternative strategy which causes the trading prices to stay
below v(m)[xi, x−i] then, by Lemma 4, i fails to trade.

So it only remains to show that buyer i cannot get a higher payoff by deviating
from σ∗ in his decision to drop out of the bidding. Suppose that xi < x−i(m)

. Then
by Lemma 5, if buyer i follows σ∗, then he will not trade and hence obtain zero
payoff. If he deviates from σ∗ and ends up trading, then by Lemmas 3 and 4, he
will pay the price of at least v(m)[x−i(m)

, x−i]. But v(m)[x−i(m)
, x−i] ≥ v(m)[xi, x−i] >

vi[xi, x−i]. By Lemma 2, i’s willingness to pay is also below the trading price, so
such deviation will not be profitable.

Similarly, if xi > x−i(m)
(i.e. vi[xi, x−i] > v(m)[xi, x−i]), then i will trade at price

v(m)[xi, x−i] and receive a strictly positive surplus, which is better than what he
could get by dropping out before the auction ends. So following σ∗ is a best reply
for buyers if all other traders are using σ∗.

It remains to consider the case xi = x−i(m)
. By Lemma 5, in this case i may

or may not win an auction if he follows σ∗. If he does win, he will pay the price
v(m)[xi, x−i] which is equal to both his perceived value and his willingness to pay.
By Lemma 4, there is no strategy for i which allows him to trade at a price below
v(m)[xi, x−i], so any i’s deviation from σ∗ is unprofitable. This completes the proof
for the buyers.

Seller’s Part. A different approach is needed for sellers, because, unlike a
buyer, a seller gets a positive payoff only if he is inactive at the end of the auction
and trades. Let us fix a seller i of type xi. We will separately consider two sets
of type profiles x−i of agents other than i. Case 1 will deal with type profiles x−i

such that xi > x−i(m)
. Case 2 will deal with type profiles x−i such that xi ≤ x−i(m)

.
Case 1. Let us fix some history h and an array of types x−i such that xi > x−i(m)

and seller i thinks x−i is possible conditional on history h.
Since xi > x−i(m)

, we have vi[xi, x−i] > v(m)[xi, x−i]. If seller i, along with all
other traders, follows strategy σ∗ after history h, then the auction will end at price
equal to v(m)[xi, x−i] and seller i will not trade and receive zero payoff. If seller i
deviates to some alternative strategy and does not sell as a result of this deviation,
she still receives zero payoff.

Now suppose that seller i sells after deviating from σ∗. Then by part 1 of
Lemma 5 there is x′i, satisfying x′i < x−i(m)

, such that after i’s deviation the final
price in the auction will be v(m)[x

′
i, x−i]. Seller i’s payoff in this case is equal to

v(m)[x
′
i, x−i]− u (xi, x−i). Since x′i < xi, we have v(m)[x

′
i, x−i] ≤ v(m)[xi, x−i].

Consider another array of types x̃−i which has the same m lowest components as
x−i. Then seller i must also think that x̃−i is possible after history h. Moreover, by
definition of perceived value, we have v(m)[x

′
i, x−i] = v(m)[x

′
i, x̃−i] and v(m)[xi, x−i] =

v(m)[xi, x̃−i]. So, v(m)[x
′
i, x̃−i] ≤ v(m)[xi, x̃−i]. Therefore, taking an expectation over
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all such x̃−i we get:

v(m)[x
′
i, x̃−i]− E

[
u (x̃i, x̃−i) |x̃i = xi, x̃−i(1) = x−i(1) , ..., x̃−i(m)

= x−i(m)

]
≤

v(m)[xi, x̃−i]− E
[
u (x̃i, x̃−i) |x̃i = xi, x̃−i(1) = x−i(1) , ..., x̃−i(m)

= x−i(m)

]
.

The last expression is less than zero because xi > x−i(m)
= x̃−i(m). Furthermore,

this expression is equal to the difference between the expected trading price that
seller i receives after deviating and bidding as type x′i and seller i’s expected utility
conditional on the knowledge of the m lowest values in the array of types of other
traders. Since these lowest m values (x−i(1), ..., x−i(m)) were chosen arbitrarily
(provided that xi > x−i(m)

), we conclude that no deviation from σ∗ is profitable in
Case 1.

Case 2. To prove the result in this case, we will show that seller i could not
gain more than δ by remaining in the bidding after a history in which the auction
price exceeds i’s willingness to pay. By staying in the bidding after such history,
seller i could raise the price at which she ultimately trades. The downside is that
he may lose a profitable trade when he does so.

As in case 1, fix some history h = {x̂1, . . . , x̂r, p} and consider an array of types
x−i that seller i of type xi thinks is possible conditional on h and that satisfies
xi ≤ x−i(m)

. Then, in the continuation of h where all traders follows equilibrium
strategy σ∗, seller i should drop out of bidding and trade at price v(m)(xi, x−i).

Now consider i’s expected gain if she deviates from σ∗ and bids as a trader of
some type x′i s.t. x′i > xi. For the equations that follow, understand the notation
Prxi

to mean the probability computed using the distribution Fmn conditional
on the type xi. As always, this is the appropriate probability computation using
beliefs of a trader of type xi. It is implicitly understood that the distribution
function Fmn depends on the number of buyers and sellers involved. Taking an
expectation over all type profiles x̃−i consistent with h and satisfying xi ≤ x̃−i(m)

,
this gain is equal to

− Pr
{

x̃−i(m)
< x′i|h, x̃i = xi ≤ x̃−i(m)

}
× (11)

× E
[
v(m)[x̃i, x̃−i]− ui (x̃i, x̃−i) |h, x̃i = xi ≤ x̃−i(m)

< x′i

]
+ Pr

{
x̃−i(m)

≥ x′i > x̃−i(m−1)
|h, x̃i = xi ≤ x̃−i(m)

}
×

× E
[
vi[x′i, x̃−i]− vi[x̃i, x̃−i]|h, x̃−i(m)

≥ x′i > x̃−i(m−1)
, x̃i = xi ≤ x̃−i(m)

]
+

+ Pr
{

x̃−i(m−1)
≥ x′i|h, x̃i = xi ≤ x̃−i(m)

}
× E

[
v(m)[x

′
i, x̃−i]− v(m)[x̃i, x̃−i]|h, x̃−i(m−1)

≥ x′i, x̃i = xi ≤ x̃−i(m)

]
.

(12)
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The first summand in (12) is non-positive and reflects the cost to seller i of
losing a trade that he would have made had he not deviated. The second sum-
mand reflects the seller’s gain when he is pivotal and raises the trading price from
vi[xi, x̃−i] to vi[x

′
i, x̃−i] by deviating. The third summand represents the impact

that seller i has on the price by making others believe that his type is higher
and thereby inducing them to bid more aggressively, even though seller i is non-
pivotal. This effect causes the price at which i trades to increase from v(m)[xi, x̃−i]
to v(m)[x

′
i, x̃−i]. We will show that the last two summands become arbitrarily small

(and in particular smaller than δ) when n gets large.
Consider the expectation in the third summand of (12). We have:

E
[
v(m)[x

′
i, x̃−i]− v(m)[x̃i, x̃−i]|h, x̃−i(m−1)

≥ x′i, x̃i = xi ≤ x̃−i(m)

]
=

E
[
u(x̃−i(m−1)

, x′i, x̃−i \ x̃−i(m−1)
)|x̃−i(1) = x̂1, ..., x̃−i(r)

= x̂r, x̃−i(m−1)
≥ x′i, x̃i = xi ≤ x̃−i(m)

]
−

E
[
u(x̃−i(m−1)

, x̃i, x̃−i \ x̃−i(m−1)
)|x̃−i(1) = x̂1, ..., x̃−i(r)

= x̂r, x̃−i(m−1)
≥ x′i, x̃i = xi ≤ x̃−i(m)

]
.

(13)

By Assumption 2, the difference of the utility values under expectation sign in (13)
is arbitrarily small uniformly in x̃−i if n is large enough. So, the expectation of
the difference is also arbitrarily small when n is large.

The utility difference in the second summand remains bounded from above and

below as n grows. However, consider the probability Pr
{

x̃−i(m)
≥ x′i > x̃−i(m−1)

|h, x̃i = xi

}
in the second summand. Note that trader i is pivotal, i.e. x̃−i(m)

≥ x′i > x̃−i(m−1)
,

only if there is a successor history of h′ with associated price p′, at which all re-
maining active traders continue bidding, so that by dropping out trader i ends the
auction. Let S(h) be the set of pairs (h′, p′) such that h′ is a successor to h and p′

is the price that prevails in h′. Then,

Pr
{

x̃−i(m)
≥ x′i > x̃−i(m−1)

|h, x̃i = xi ≤ x̃−i(m)

}
≤

max
(h′,p′)∈S(h)

Pr{x̃j > x̂p′ for every active bidder j 6= i at p′|h′, x̃i = xi ≤ x̃−i(m)
}.

By Assumption 3, PrFmn {x̃j = x̂|x̃−j = x−j} ≥ ε for every x̂ and every x−j. Since
the number of active traders in each successor h′ of h is at least n (otherwise the
auction would have terminated),
Pr{x̃j > x̂p′ for every active bidder j 6= i at p′|h′, x̃i = xi ≤ x̃−i(m)

} ≤ (1− ε)n

for every pair (h′, p′) ∈ S(h). Hence, the probability that bidder i is pivotal is
arbitrarily small at every price level, provided that the number of sellers n is large
enough.

Since the first summand in (12) is negative, we conclude that a seller’s gain
from deviating at any price level becomes smaller than δ when n is sufficiently
large. Q.E.D.
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