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Abstract

We study the interaction between productive investment and persuasion activities in a

principal-agent setting with strategic disclosure. In an attempt to persuade the principal,

the agent diverts substantial resources from productive activities to information acqui-

sition for persuasion, even though productive activities are more e�cient and raise the

chances of success in persuasion. The equilibrium outcomes of simultaneous and sequen-

tial allocation procedures are the same, because the value of learning and experimentation

through information acquisition is dominated by the value of productive investment. We

show that an increase in cost of an investment project leads to a lower productive invest-

ment.
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Information is a valuable good that fosters e�cient allocation of limited resources. However,

gathering information is not costless. Rather, it requires expending resources taken away

from other uses. If the party that gathers information cannot fully appropriate the returns

to information, then information can be undersupplied. At the same time, information is

often used as a strategic instrument to in�uence and persuade decision makers, which creates

additional stimuli to produce information. It is therefore natural to inquire whether in the

presence of persuasion motives, information will be produced e�ciently, overproduced or remain

undersupplied.1
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sen, Rob Oxoby, the participants of the seminars at CETC, CIREQ and Texas A&M.
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1This question is relevant given the importance of persuasion activities in modern economies. Donald

McCloskey and Arjo Klamer (1995) show that a substantial fraction of the US GDP is spent on persuasion
activities. The more recent study of Gerry Antioch et al. (2013) largely con�rms these �ndings.
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This paper explores this issue by studying a novel tradeo� in resource allocation between

productive investment and acquiring information for persuasion purposes. To this end we

construct a simple principal-agent model in which an agent (he) wants to persuade a principal

(she) to approve a project with an uncertain return. The agent allocates a �xed budget

between productive investment that improves the project return stochastically, and information

acquisition that generates veri�able signals about the project return. The principal observes

neither the budget allocation nor the realization of the signals. The agent chooses which signals

to disclose to the principal, and the principal decides whether to approve or reject the project.

To keep the model tractable, we consider a binary signal structure. Each signal is either a

�success� or a �failure� where a success signals a higher project return, and a failure signals the

opposite.2 In this setup, the value of a signal comes entirely from its persuasion e�ect. This

allows us to identify and highlight the persuasion motive in information acquisition without

confounding it with other motives.

Our �rst result shows that in the setting with static budget allocation, in which the budget

allocation decision is made once and for all, the agent invests substantial resources in informa-

tion acquisition. This stands in contrast with the �rst-best outcome which prescribes spending

the entire budget on productive investment. Intuitively, the agent faces he following tradeo�

in allocating resources between investment and information acquisition. As productive invest-

ment improves the distribution of the project return, it also increases the probability that any

given signal is a success, which incentivizes the agent to invest. In contrast, the distribution

of the project return is not a�ected by information acquisition. However, acquiring more sig-

nals increases the chances that the agent obtains a su�cient number of successes to persuade

the principal to implement the project. This motivates the agent to shift resources towards

information acquisition.

Our central result shows that as the project cost increases, the agent shifts more resources

into information acquisition at the expense of the productive investment. To understand why

this is so, consider what happens as the cost of the project increases. In response, the principal

has to raise her requirements for project approval: she now needs either more successful signals

or a higher productive investment or both. But the only instrument at her disposal is a

number of successful signals required for the project approval, and in deciding how to change it

the principal has to consider the agent's equilibrium response. If the principal raises the signal

threshold, the agent shifts resources towards information acquisition, away from the productive

investment. But since lower productive investment decreases the chances that any given signal

is a success, the rate at which the agent reduces productive investment after an increase in

the signal threshold is less than 1-to-1. This turns out to be both a blessing and a curse. It

is a blessing because productive investment does not fall too much in response to a higher

2There are many contexts where information comes in binary form. For example, the technology can either
work or not, a certain task can be completed or left un�nished or a test can be failed or passed. Often, it is
too costly or infeasible to observe or assess the �intermediate� values of partial success or failure.
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signal threshold. But it is a also a curse: since productive investment responds sluggishly, the

principal �nds it optimal to raise the signal threshold when the project's cost increases, which

lowers productive investment and increases the ine�ciency of the allocation.

We then extend our analysis to a dynamic setting in which the agent allocates the budget

incrementally, one unit at a time, and observes the realization of the acquired signals before

deciding whether to invest the next budget unit or use it to acquire a signal. This allows the

agent to engage in experimentation and learning about the state through signal acquisition.

However, we show that experimentation has no value in this setting. The main reason behind

this is that, abstracting from the persuasion value of a signal, acquiring a signal for learning

and experimentation is dominated by investing the same budget unit productively. Indeed,

a unit of investment increases the expected project return, while an unbiased signal has zero

expected e�ect on the project's return and, in the best case when it is a success, increases the

project return by the same amount as one unit of investment.

Of course, the agent needs to acquire signals to persuade the principal, but it is optimal for

the agent to frontload all the investment. That is, her optimal strategy is to invest at �rst and

then to switch to information acquisition. It then follows that the equilibrium allocation in the

dynamic setting is the same as in the static one where the agent makes a one-time allocation

decision: in both settings the agent allocates the same shares of budget to productive investment

and to information acquisition. Otherwise, if the allocations in the two setting were di�erent,

it would be optimal for the agent to use the one that achieves a better payo� in both settings.

Acquiring information for learning and experimentation has no value in our context be-

cause the alternative, productive investment, has a positive e�ect on project return. This

distinguishes our model from the existing models of experimentation where the alternative is

obtaining a risk-free return from another source. We believe that this feature is not unique

to our set-up, and our analysis has broader applicability in other economically interesting

contexts.

Our characterization of the equilibrium allocation and its ine�ciency in static and dynamic

contexts pertains to settings in which the principal-agent relationship does not rely on any

contractual commitments. It is natural therefore to inquire whether this ine�ciency can be

alleviated when the parties can make some kind of a commitment ex ante. To explore this,

we extend our analysis to consider three commitment scenarios. The �rst one is the agent's

commitment to a full signal disclosure. The second is the principal's commitment to a decision

rule, and the third is the combination of these two commitments.

Intuitively, by committing to full signal disclosure the agent ties his own hands. Hence, by

obtaining and disclosing a small number of signals the agent can now convey to the principal

that the rest of his budget has been invested. There is, however, one caveat to this rule that

implies that the principal exhibits some skepticism and does not simply deduct the number of

disclosed signals from the agent's budget to compute the productive investment. If the principal

did this, then the agent would shirk and save the cost associated with productive investment
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which is small but positive in our model.3 So, to be certain that the agent had productively

invested the budget remaining after information acquisition, the principal requires at least one

successful signal.

Consequently, in the setting with commitment to signal disclosure, the agent acquires such

number of signals that the investment of the remaining budget together with one successful

signal are su�cient to push the principal's expectation of the return above the cost. Therefore,

as the project cost increases, the agent acquires less signals and increases productive investment.

In fact, under a high project cost the budget allocation is close to the e�cient one. This result

stands in a sharp contrast to the outcome with no commitment where productive investment

decreases in the project cost.

The principal's commitment to a decision rule results in an intermediate level of productive

investment: below its level under the agent's commitment, but above the level in the setting

without commitment. The principal optimally commits to a minimal signal threshold. De-

pending on the parameters, she requires either one or two successful signals for the project

approval. This low threshold shifts the agent's incentives towards more productive investment.

Still, in order to improve his chances of obtaining a successful signal, the agent allocates sub-

stantial resources to information acquisition, so the ine�ciency persists. Since the principal's

approval threshold does not change with the project cost, the agent's investment in productive

activities does not change with that cost either.

Finally, we show that if the agent can commit to full signal disclosure, the principal does

not get any additional bene�t from her ability to commit to an approval threshold. In fact,

the principal's additional commitment to an approval threshold would be counterproductive

as it would undermine the e�ect of the agent's commitment to signal disclosure. Under the

latter, the agent makes a large productive investment because the alternative � acquiring a lot

of information which becomes observable� reveals low productive investment. This causes the

principal to increase the threshold number of successful signals required for project approval.

This e�ect is crucial for stimulating investment. Yet, it would disappear if the principal addi-

tionally committed to the approval threshold.

Our model has several applications. First, consider project approval process in organiza-

tions. The top management's decisions which projects to approve and which to abandon are

a key factor in the success of an organization (Robert Gibbons, Niko Matouschek and John

Roberts, 2012). Yet, there are typically no formal mechanisms for such approval. So a manager

of a group developing a new technology typically has to produce substantial evidence to con-

vince the top executives to support the project. Producing such evidence requires signi�cant

time and e�ort, which alternatively could be spent on improving the technology. While im-

proving the technology also makes it easier to produce favorable evidence about it, our results

3The assumption that the agent bears a small �xed cost of productive investment is plausible, since produc-
tive investment typically requires not only a budget allocation but also additional inputs such as management,
monitoring, etc.
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show that the manager would overinvest in persuasion in the absence of clear commitments

and approval conditions.4

As a second example, consider promotion process in organizations. Prior to the promo-

tion decision, an employee allocates her time between investing in her fundamental skills that

raise her productivity and self-promotion that signals her productivity. The latter may in-

volve participating in conferences, making presentations, preparing publications, etc. Investing

resources in the fundamental skills may be a more e�cient to raise the employee's produc-

tivity. However, the managers cannot accurately measure such investment, and so promotion

decision is typically a�ected by the employee's success in self-promotion. This stimulates the

employee to overinvest in self-promotion activities, even though better fundamental skills make

self-promotion more successful, 5

Third, consider the development and approval process for new drugs and pharmaceutical

products, such as the new COVID-19 vaccines. Besides �nancial investment, time is am essen-

tial resource in this process, since the vaccine has to be brought to market in a relatively short

time period. A pharmaceutical company has to allocate available limited time to development

and trials. Our results suggest that this allocation will be skewed towards trials. However,

a commitment by the decision-maker to the approval threshold and the commitment by the

�rm to full disclosure of trial outcomes would improve the e�ciency. Thus, our paper supports

setting clear and unambiguous approval rules by the FDA as well as transparency of trials

requiring pharma companies to register all their trials in advance.

Related Literature: There is a large literature on disclosure games starting with Sanford J

Grossman (1981) and Paul R Milgrom (1981) who pioneered the study of strategic disclosure

of veri�able information an agent holds veri�able information in an agency relationship. These

authors as well as other earlier papers in this literature, including Ronald A Dye (1985);

Michael J Fishman and Kathleen M Hagerty (1990); Woon-Oh Jung and Young K Kwon

4The history of Xerox corporation in the 1970s demonstrate that persuasion activities may crowd out
valuable productive investment resulting in the rejection of potential technological breakthroughs. At the
end of 1960s the �rst prototype of a personal computer was developed at Xerox's Palo Alto Research Center
(PARC). However, the management of Xerox remained skeptical about the new technology, and so PARC
employees spent a lot of resources on persuasion activities, which included numerous product presentations,
training sessions for Xerox' top executives, preparation of long reports and memoranda and even installing
the computers in the White House and the Senate, where they performed well (John Laprise, 2009; Natalya
Vinokurova and Rahul Kapoor, 2020). All these e�orts required diverting substantial resources from R&D,
and the technology remained very expensive. In the end, Xerox executives abandoned this project, even
through its core technology was quite revolutionary. Soon after that, top scientists and engineers left Xerox
for other corporations, including Microsoft and Apple, where they helped to successfully commercialize the
ideas developed at PARC. In particular, PARC scientists played central roles in developing Lisa and Macintosh
personal computers at Apple. (Michael Hiltzik, 1999). Steve Jobs remarked later that �Xerox could have owned
the entire computer industry today� (Omar A Nayeem, 2017).

5There is rich evidence that promotion decisions in organizations heavily rely on subjective performance
evaluations that are a�ected by the employees' in�uence activities. The evidence also suggests that the employ-
ees engage in signi�cant in�uence activities when a promotion is on the agenda (Jasmijn C Bol, 2008; Dennis
Campbell, 2008; Chad A Higgins, Timothy A Judge and Gerald R Ferris, 2003; Rebecca A Thacker and Sandy J
Wayne, 1995).
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(1988); Masahiro Okuno-Fujiwara, Andrew Postlewaite and Kotaro Suzumura (1990); Robert E

Verrecchia (1983), focused on the �unraveling� phenomenon resulting in all types of a sender

fully revealing themselves in equilibrium. Our paper is more closely related to the subsequent

literature that studies situations without full unraveling e.g., Viral V Acharya, Peter DeMarzo

and Ilan Kremer (2011); Jacob Glazer and Ariel Rubinstein (2004, 2006); Ilan Guttman, Ilan

Kremer and Andrzej Skrzypacz (2014); Barton L Lipman and Duane J Seppi (1995). However,

this literature does not consider the tradeo� in the allocation of resources between productive

and persuasion-related activities.

The interaction between disclosure and investment is studied in Anne Beyer and Ilan

Guttman (2012). In their paper a manager privately observes the value of the �rm and un-

dertakes productive investment. The manager can then disclose the investment level to the

market. They show that the manager undertakes a suboptimal investment that she publicly

discloses in an attempt to distort the market's beliefs about the �rm's value. In contrast

to Beyer and Guttman (2012), in our paper the agent faces a di�erent tradeo� of allocating

resources between investment and information acquisition used for persuasion.

Elchanan Ben-Porath, Eddie Dekel and Barton L Lipman (2017) and Peter M DeMarzo,

Ilan Kremer and Andrzej Skrzypacz (2019) study a disclosure setting where an agent chooses

a distribution over outcomes and then decides whether to disclose the outcome to an outside

observer. Ben-Porath, Dekel and Lipman (2017) show how the agent's control of information

leads to ine�cient risk-taking. In an attempt to impress an outside observer, the agent chooses

a risky project even if the safer alternative has a higher expected value. They show that

the agent only discloses su�ciently good outcomes, and otherwise pretends to be uninformed.

DeMarzo, Kremer and Skrzypacz (2019) study a setting in which a seller chooses a test for a

product of unknown quality, and then decides whether to disclose the test result to a buyer.

Similar to Ben-Porath, Dekel and Lipman (2017) they show that the seller has an incentive to

run an ine�cient test.

While in Ben-Porath, Dekel and Lipman (2017) and DeMarzo, Kremer and Skrzypacz (2019)

the agent chooses a distribution over observable outcomes, in our setup the agent e�ectively

chooses two interdependent distributions. His investment decision in�uences the unobserved

distribution of the project returns, and both the investment and the information acquisition

decisions determine the distribution of signals.

A related literature (Glazer and Rubinstein, 2004, 2006; Sergiu Hart, Ilan Kremer and

Motty Perry, 2017) studies informational e�ciency of disclosure strategies when the agent is

endowed with veri�able information and decides which information to disclose to a�ect the

principal's decision. This literature characterizes conditions under which the outcomes of an

optimal mechanism are equivalent to equilibria of disclosure games. In particular, Glazer and

Rubinstein (2006) demonstrate this in a setup where the principal's action is binary. Itai Sher

(2011) establishes a similar result for general action sets of the principal, and shows that it

holds as long as the principal's payo� is concave. In our setup where the principal's action set
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is binary, and the agent has state-independent preferences and possesses veri�able information,

the outcome under commitment is strictly preferred by the principal to the outcome of the

disclosure game. The di�erence between our paper and this literature is that in our model the

agent's type/project return is endogenous and his budget allocation a�ects both his type as

well as the information that he can convey to the receiver about his type.

The rest of the paper is organized as follows. Section I presents the model. Sections II-IV

contain the analysis and our main results. Section V concludes, while all proofs are relegated

to the Appendix.

I Setup

A principal (she) owns a project of a known cost c ∈ [0, 1] and an unknown return. Before

taking a decision whether to approve the implementation of the project, the principal hires an

agent (he) to develop it.6 Project development includes productive investment that improves

the project's return and acquisition of veri�able information about the project's return.

The agent is endowed with a �xed budget of size n ≥ 2 that he can allocate between

investment and information acquisition as speci�ed below. The principal does not observe

how the agent allocates the budget. The �xed budget may represent limited time available

to develop the project. Alternatively, the principal may have a �xed amount of monetary,

human or other resources that she can dedicate to the project and endow the agent with. This

assumption is made to simplify the exposition and to focus on the tradeo� in the resource

allocation. In the Appendix we show that our main �ndings hold when the budget is chosen

endogenously.

If the principal decides to implement the project, then her payo� is θ − c where θ is the

realized project return, while the agent's payo� is normalized to 1. If the project is rejected,

both players receive zero payo�. Thus, the principal wants to approve the project only if it is

pro�table, while the agent always wants the project to be implemented.

Budget allocation: We assume that the budget allocation process is lumpy. Each unit

of investment and each signal require one budget unit. The agent can invest any amount

k ∈ {1, .., n} productively and spend the remainder on acquiring r ≤ n − k signals about the

project return. Therefore, the agent's budget allocation strategy is a pair (k, r) ∈ {0, ..., n}2

such that k + r ≤ n.

The agent incurs a small �xed cost b > 0 when he chooses a positive level of investment.7

6As an example, the principal can be thought of as the top management of a corporation who hires a team of
engineers to improve and test a production technology. The principal may not possess the necessary knowledge
to execute the project, as in (Ricardo Alonso, Wouter Dessein and Niko Matouschek, 2008; Heikki Rantakari,
2008), or may lack time to work on it, as in (Oriana Bandiera, Luigi Guiso, Andrea Prat and Ra�aella Sadun,
2011).

7This assumption re�ects that investment is arguably a more complex activity than information acquisition,
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To ensure that this �xed costs does not preclude positive investment we make the following

assumption:

Assumption 1. The �xed cost of investment b satis�es b < n−2
n(n+1)

for any n ≥ 3.

When the agent chooses zero investment, the project return θ is determined by a draw from

the uniform prior U [0, 1]. Each unit of investment can be thought of as an experiment that

produces an alternative technology and results in an additional draw from U [0, 1]. The highest

draw is the best available technology, and so the realized return θ is the maximum of these

k + 1 draws.

Thus, with investment k, the project return is distributed according to the cdf Fk(θ) =

θk+1.8 The players do not observe θ until the payo�s are realized.

Signals are binary. The realization of a signal is denoted by s and could either be a �success�

(s = 1) or a �failure� (s = 0), with Pr(s = 1|θ) = θ. The obtained r signals constitute hard

evidence set Sr := {s1, .., sr}.

Disclosure: The signals are veri�able information, so the agent can only hide signals, but

cannot forge them. To formalize the disclosure process, let j(Sr) be the number of successes in

the evidence set Sr: j(Sr) =
∑r

i=1 si. The agent's disclosure to the principal can be represented

by a message that contains pair of numbers, mj′

r′ = (r′, j′), where r′ is the number of disclosed

signals and j′ is the number of successes among the disclosed signals. Given the evidence set

Sr, the set of feasible messages is M(Sr) = {(r′, j′)|r′ ≤ r, r′ − r + j(Sr) ≤ j′ ≤ j(Sr)}. The

lower bound on j′ comes from the fact the agent cannot disclose more failures than their actual

number, r − j(Sr), in the set Sr.

Timing: First, the agent chooses how to allocate the budget between investment and infor-

mation acquisition. Second, the return θ is drawn, the signals are realized and are privately

observed by the agent. Then the agent decides which signals to disclose. The principal observes

the disclosed signals, and decides whether to approve the implementation of the project, after

which the payo�s are realized. The timeline is shown in Figure 1. In our baseline scenario we

consider a static, once-and-for-all budget allocation. Subsequently, we study a dynamic budget

allocation process.

Equilibrium: We use the standard notion of perfect Bayesian equilibrium and focus on equi-

libria in pure strategies. The agent's resource allocation and disclosure strategies must be

sequentially rational given the principal's belief and her approval strategy. The principal's

approval strategy must be sequentially rational given the agent's strategy and the principal's

as the former requires more management and monitoring than the latter. Technically, it allows us to rule out
uninteresting equilibria.

8Thus, the distribution of the project return after a larger productive investment �rst-order stochastically
dominates the project return distribution under a lower investment.
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Agent allocates the budget

The return θ is realized

t

Signals are realized

Agent makes the disclosure decision

Principal approves or
rejects the project

Figure 1: The Timing of the Game

beliefs, which are represented by a mapping from the set of disclosures into the set of proba-

bility distributions over [0, 1] × {0, ..., n}3, the product of the set of possible project returns,

investment level k, the number of acquired signals r and the number of successes j. The beliefs

are denoted by µ(mj′

r′) where m
j′

r′ stands for the agent's disclosure including r′ signals and j′

successes. The beliefs must be rational and consistent with the agent's resource allocation and

disclosure strategy. That is, they must derived from the agent's strategy by Bayes rule on

the equilibrium path. On an o� equilibrium path, the beliefs must satisfy the restriction that

µ(mj′

r′) puts a positive probability only on 4-tuples (θ, k, r, j) such that k + r ≤ n, r ≥ r′ and

j ≥ j′.

II Analysis and Main Results

A. Principal's beliefs and approval strategy

The principal approves the project if EP [θ|µ(mj′

r′)] ≥ c, and rejects it otherwise, where

EP [θ|µ] is the principal's expectation of θ given her belief µ. Thus, it is useful to characterize

the principal's beliefs about the project return θ. To do so, one can apply standard tools for

our beta-Binomial model.9 In particular, if the principal believes that the agent has made

investment k, and obtained j successes in r ≥ j signals, her posterior beliefs about θ are

characterized by the probability distribution with density

f(θ|k, r, j) = θk+j(1− θ)r−j (k + r + 1)!

(k + j)!(r − j)!
. (1)

Therefore,

EP [θ|k, r, j] =
k + j + 1

r + k + 2
. (2)

We now introduce some intuitive restrictions on the equilibrium strategies and beliefs.

First, without loss of generality we focus on the agent's investment and information acquisition

strategies (k, r) such that the agent spends the whole budget i.e., k+r = n. Acquiring r < n−k

9See Morris H DeGroot, Mark J Schervish, Xiangzhong Fang, Ligang Lu and Dongfeng Li (1986).
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signals is weakly dominated by acquiring n−k signals because (i) the principal does not observe
the number of acquired signals; (ii) any disclosure that is feasible with r signals is also feasible

with a larger number of signals. So the agent can never be better o� by acquiring less than

the maximal possible number of signals.

Next, we will restrict the principal's beliefs to have the following properties. Let k∗ be the

agent's equilibrium investment level.

Property 1. (Uncontroverted k∗ and Skepticism) If the agent discloses r′ signals s.t. r′ ≤
n − k∗, then the principal's beliefs put probability 1 on the event that the agent has made

investment k∗, has acquired n−k∗ signals, and failed to disclose n−k∗− r′ signals all of which

are failures.

Property 2. Suppose that the agent discloses r′ signals and j′ successes s.t. r′ > n−k∗. Then
the principal's beliefs put probability 1 on the event that the agent has invested at most n− r′,

and has disclosed all successes.

Property 1 implies that the agent cannot convince the principal that he has invested more

than the equilibrium level k∗ by disclosing r′ < n − k∗ signals. Indeed, disclosing such lower

number of signals r′ is still consistent with investment k∗. Therefore, upon observing r′ < n−k∗

signals the principal maintains her equilibrium belief that the agent has invested k∗, and adopts

a skeptical point of view that the �missing�, undisclosed n− k∗ − r′ signals are all failures.

Property 2 implies that upon observing r′ > n−k∗ signals, the principal concludes that the
agent has deviated from k∗ to a lower investment level. Yet, she is still skeptical with regards

to the number of successful signals and believes that all successes have been disclosed.

Together, Properties 1 and 2 imply that the principal believes that all successful signals are

disclosed by the agent. This yields the following Lemma.

Lemma 1. Let k∗ be the agent's equilibrium investment level. Suppose that the agent discloses

r′ signals including j′ successes, and that the principal's beliefs satisfy Properties 1 and 2,

1. If r′ ≤ n − k∗, then the principal's posterior expectation of θ is 1+j′+k∗

n+2
, and so she

approves the project if and only if 1+j′+k∗

n+2
≥ c.

2. If r′ > n−k∗, then the principal's posterior expectation of θ is bounded above by n−r′+j′+1
n+2

,

and so she approves the project only if n−r′+j′+1
n+2

≥ c.

Lemma 1 implies that the principal's equilibrium threshold j∗ i.e., the minimal number of

successes that she requires to approve the project, is

j∗ = ⌈c(n+ 2)⌉ − (k∗ + 1), (3)

where k∗ is the equilibrium level of investment. The decision rule (3) highlights that the prin-

cipal lowers her evidence threshold when equilibrium investment level increases. It also re�ects
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that a disclosed success is a perfect substitute for a unit of investment from the principal's

perspective. Indeed, each a�ects the principal's posterior beliefs of θ in the same way.

B. Disclosure and budget allocation

Consider now the agent's optimal strategy. We start with her disclosure decision when the

principal's beliefs satisfy Properties 1 and 2 and hence the threshold number of successful signals

required for project approval is given by (3). Recall that given the equilibrium investment level

k∗, the number of signals is r∗ = n−k∗ since the agent would always exhaust the entire budget.

Lemma 2. Suppose that the agent obtains r′ signals of which j′ are successes.

(i) If r′ ≤ r∗, then it is optimal for the agent to disclose all signals.

(ii) If r′ > r∗, then it is optimal for the agent to disclose r∗ = n−k∗ signals and min{j′, r∗}
successes.

After any optimal disclosure, the principal believes that the agent has made investment k∗

with probability 1.

To understand the Lemma, note the following. If the agent acquires less than r∗ signals, he

can never convince the principal that he has invested more than k∗. Therefore, it is optimal

for the agent to disclose all successful signals. On the other hand, if the agent has deviated

and acquired more signals (i.e. r′ > r∗ ), then the principal's skepticism prevents the agent

from disclosing more than r∗ signals even if he obtained more than r∗ successes.

Next, we consider the equilibrium budget allocation. To begin, we provide the �rst-best

budget allocation benchmark which the principal would choose if she could allocate resources

herself.

Lemma 3. Suppose that the principal can choose the budget allocation. If c ≤ n+1
n+2

, she would

spend the entire budget on investment and approve the project with probability 1. If c > n+1
n+2

,

the principal makes zero investment and never approves the project.

To understand Lemma 3 note that each additional unit of investment shifts the distribution

of the project return θ to the right. In contrast, in expectation a signal does not a�ect the

distribution of the project return. Hence, the principal's �rst-best allocation is to invest the

entire budget. Since this allocation maximizes the probability of the project approval, it would

also be chosen by the agent if her strategy was observable.

This result comes with a quali�er that the project cost c cannot be too high. In particular,

it cannot exceed n+1
n+2

. This is because under the best possible scenarios when either all budget

is productively invested or all obtained signals are successes, the posterior expectation of θ

equals n+1
n+2

. So the principal never approves the project if c exceeds this level. The next

Lemma shows that the �rst-best allocation cannot arise in our setting where budget allocation

is unobservable.

Lemma 4. There is no equilibrium in which k∗ = n.
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Suppose to the contrary that in equilibrium the agent invests all budget. Then the principal

does not expect any signal disclosure, and the agent has a pro�table deviation to k = 0 which

saves her the �xed cost b > 0 associated with productive investment. Therefore, k∗ = n cannot

be sustained in equilibrium.

Next, we focus on the agent's equilibrium budget allocation strategy and provide our central

qualitative result. Our previous analysis implies that the agent's equilibrium investment k∗

must be a solution to the following maximization problem:

max
k′∈{0,..,n−j∗}

Pr(j ≥ j∗|k′, n)− 1k′>0b (4)

where j∗ = ⌈c(n+ 2)⌉ − (k∗ + 1) is the signal threshold i.e., the minimal number of successful

signals required by the principal for project approval when she expects the agent to invest k∗

(see (3) and Lemma 1), and Pr(j ≥ j∗|k′, n) is the probability of obtaining at least j∗ signals

given investment k′. The second term in (4) re�ects the cost b > 0 that the agent incurs when

she makes a positive investment.

The analysis of the problem (4) underlies the next two results, Theorem 1 and Proposition

1. Theorem 1 presents our main qualitative result establishing that the level of information

acquisition increases at the expense of productive investment as the project cost c increases.

So the ine�ciency of the budget allocation increases in the project cost. As we show below,

this result is robust and holds both under a sequential budget allocation procedure, as well

under more general preferences.

Theorem 1. Suppose that n ≥ 3 and c ∈ [1
2
, n
n+2

]. If the project cost c increases, the equilibrium

level of investment decreases.

Theorem 1 follows directly from Proposition 1 which characterizes the equilibrium allocation

for di�erent values of n and cost c.

Proposition 1. The equilibrium budget allocation k∗ and the principal's evidence threshold j∗

are as follows:

1. If c > n+1
n+2

, then k∗ = 0 and the principal never approves the project.

2. If c ∈
(

n
n+2

, n+1
n+2

]
, then k∗ = 0 and j∗ = n.10

3. If n > 3 and c ∈
(
1
2
, n
n+2

]
for even n and c ∈ ( n+3

2(n+2)
, n
n+2

] for odd n, then k∗ = (n+ 2)−
⌈c(n+ 2)⌉ and j∗ = 2⌈c(n+ 2)⌉ − (n+ 3).

4. If n is odd, n ≥ 3, and c ∈ ( n+1
2(n+2)

, n+3
2(n+2)

], then k∗ = n−1
2

and j∗ = 1.

12
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Figure 2: The equilibrium investment k∗ for n = 10, 20, 50, 100 in the interval c ∈
[

n+4
2(n+2)

, n
n+2

]
The equilibrium allocation is illustrated in Figures 2 and 3. Figure 2 shows that the equilib-

rium investment is around 50% of the budget when c is close to 1
2
, but decreases monotonically

in the project cost and reaches a negligible level at high c. At the same time, Figure 3 highlights

that the signal threshold j∗ grows faster than investment decreases. Intuitively, as c grows, the

principal must have a more favorable belief about the return θ to approve the project. She can

achieve this only by increasing the signal threshold j∗, but this causes a decrease in investment.

The restrictions on costs in Proposition 1 stem from the fact that an equilibrium supported

by weakly skeptical beliefs, which we focus on, fails to exist when the project cost is su�ciently

small. Indeed, the condition for the agent not to deviate to a higher investment under weakly

skeptical beliefs is k∗ ≥ n−⌈c(n+2)⌉, while the requirement j∗ ≥ 1 holds if k∗ ≤ ⌈c(n+2)⌉−2.

These two conditions are obviously incompatible when c is su�ciently small that n + 2 >

2⌈c(n + 2)⌉. However, for this cost range there exists an equilibrium in which the principal

approves the project with probability 1. When the cost is intermediate ( ⌈c(n+2)⌉ < n
2
+1 and

c > 1
n+2

) the equilibrium supporting this outcome is quite unintuitive: it involves the agent

using a weakly dominated strategy of not spending any budget (zero investment and no signal

acquisition) and the principal forming beliefs that do not satisfy our skepticism restriction. On

the other hand, when c ≤ 1
n+2

, every equilibrium outcome is such that the principal approves

the project with probability 1, because the principal's expectation of θ in the worst case of zero

10This case includes n = 2 and c ∈
(
1
2 ,

3
4

]
. So with n = 2 the equilibrium investment is always zero.
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Figure 3: k∗ decreasing in c, and j∗ increasing in c, for n = 10, 20, 50, 100 and c ∈ [ n+4
2(n+2)

, n
n+2

]

investment and n failed signals is 1
n+2

.11

Finally, it is worth noting that the central result of this section -that the investment de-

creases in the project cost � does not depend on the fact that a successful signal and one

investment unit have the same e�ect on the expected project return. We con�rm this in the

Appendix where we study a more general investment technology, speci�cally, such that invest-

ment k induces the probability distribution of the project return θρk+1 where ρ ∈ [1
2
, 1].

III Sequential Budget Allocation

So far we have studied a setting in which the agent decides how to allocate the whole budget

once and for all. However, some allocation processes have a sequential nature: the agent

allocates the budget incrementally and observes some interim information before deciding how

to allocate the next budget unit. In this section, we explore such scenario.

Speci�cally, suppose that in each time period t ∈ {1, ..., n} the agent decides whether to

invest one budget unit or use it to acquire an additional signal. If he acquires a signal at time

period t ∈ {1, .., n − 1}, then he observes the realization of this signal before the start of the

next period t+1. We assume that the agent always perfectly recalls the history, including the

allocation and signal realizations. We maintain the distributional assumptions of the baseline

model, including the binary signal structure. Recall that these assumptions imply, in particular,

11As n grows large, 1
n+2 converges to 0, and so for large budgets the project is approved automatically only

when the cost c is very small.
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that a budget unit invested productively shifts an observer's beliefs about the distribution of

θ in the same way as a successful signal. By Bayes rule, her beliefs about the state θ at period

t depend only on the numbers of invested units and realized successes, and not on their order.

Importantly, under sequential budget allocation the agent updates her beliefs about the

value of θ in every period, and can employ a dynamic strategy rule prescribing whether to

acquire signals or to invest depending on the past realizations of the signals. This allows her,

in particular, to engage in some form of experimentation by acquiring signals and conditioning

her subsequent choices on signal realizations. However, we show that the agent does not bene�t

from these dynamic possibilities. Her optimal strategy implements the same allocation as in

the static case, as the next result demonstrates.

Theorem 2. Suppose that n ≥ 2 and c ∈
(
1
2
, n
n+2

]
. Then an optimal sequential budget alloca-

tion strategy for the agent is to invest k∗ units in the �rst k∗ periods and then to obtain n− k∗

signals in subsequent time periods.

This optimal budget allocation is unique provided that the agent acquires a signal in every

time period when she is indi�erent between acquiring a signal and investing.

Theorem 2 says that the agent frontloads investment and then uses all the remaining budget

to acquire signals. To understand why this is so, recall that investment has a positive e�ect

on the project return; a successful signal has the same positive e�ect on the beliefs about the

return as a unit of investment, while an unsuccessful signal negatively a�ects the beliefs about

the project return. So there is no reason to acquire a signal for learning or experimentation, as

it is better to invest instead. In fact, since the only value of a signal lies in its use as evidence

to persuade the principal, we show that there exists a threshold such that the agent never

acquires a signal if the probability of success is below this threshold. This implies that the

agent needs to start with allocating the budget to investment for the �rst few periods.

On the other hand, once the agent started optimally acquiring signals, he never switches

back to investment. Indeed, if that was ever to occur, the agent would be better o� shifting such

investment forward and shifting the information acquisition to a later stage. It follows that the

optimal strategy consists of two stages: an investment stage that occurs over k′ initial periods

followed by information acquisition stage, without switching back and forth between the two

activities. It then follows that the investment stage must be exactly k∗-long. Otherwise, i.e.

if k′ ̸= k∗, k∗ could not be optimal in the static case, for the agent in this case could get the

same payo� as in the dynamic case by making an investment k∗, and vice versa.

A conclusion that emerges from the analysis of the sequential case is that the agent sees

no point in experimenting in our setting, which ultimately determines why the sequential and

static allocations coincide. As emphasized above, the experimentation is not valuable here

because a successful signal changes the posterior beliefs about the project return in the same

way as one unit of investment. This is a special feature of our environment. However, we

believe that it is not unique to our set-up and also holds in other contexts and therefore our
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conclusion has a broader appeal and applicability.

IV Contractual Commitment

In this section we analyze the static setting with an additional element: either one or both

players can commit to a particular course of action, or a decision rule. So in such set-ups

the parties possess intermediate contractual opportunities: lesser than under the mechanism

design paradigm which allows for full commitment and contingent transfers, bur richer than in

the baseline no-commitment signaling and persuasion approach. The motivation behind this

approach, as expressed by Nahum Melumad and Toshiyuki Shibano (1991), comes from the

fact that it is common to �nd �intra�rm, regulatory, and political relationships where[in] an

uninformed decision maker, attempting to elicit information from an informed party a�ected

by his decisions, in unable to use transfers.� These authors marry strategic communication

setting of Vincent P Crawford and Joel Sobel (1982) with mechanism design without transfers,

which is equivalent to the principal's commitment to a decision rule as a function of the agent's

message.12

Studying contractual commitments without transfers in our setting is particularly natural

and interesting: it provides an opportunity to consider and compare several forms of com-

mitment, and to explore whether and to what extent di�erent forms of commitment allow to

curtail the ine�ciency of the allocation. The �rst form of commitment that we study is the one

by the agent to full disclosure. The second is the commitment by the principal to the decision

rule. The third form is a cap on information acquisition set by the principal.

First, let us suppose that the agent can commit to signal disclosure obliging her to disclose

all acquired signals and their outcomes. The outcome in this case is characterized in the

following Proposition.

Proposition 2. Suppose that the agent commits to reveal all signal realizations and that n ≥ 2.

Then, for c ∈ [1
2
, n+1
n+2

], in equilibrium the agent chooses investment level k∗ = ⌈c(n + 2)⌉ − 2

and obtains n− k∗ signals, and the principal approves the project if the signals include at least

one success i.e., j∗ = 1.

The key aspect of the agent's commitment is that it allows him to credibly signal his

investment choice to the principal. The disclosure of a certain number of signals indicates that

the remainder of the budget has been invested productively.

There is, however, one caveat to the credibility of such message: the principal has to be

sure that the agent did not shirk and invested nothing. For this reason, the principal requires

the agent to deliver at least one successful signal. Otherwise, if no successes were required for

the approval, the agent would deviate and choose zero investment to save the �xed cost b.

12Earlier contributions (Bengt Holmstrom, 1977, 1984) lay out the motivation and the framework for the
study of commitment without transfers in organizations, which was later developed by the large literature on
delegation.
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But the agent does not want the principal to set a higher signal threshold, as it would

make getting approval more di�cult. So, the agent chooses to acquire a su�ciently small

number of signals, which makes the principal believe that most of the budget has been invested

productively and require just one successful signal for approval.

According to Proposition 2, the agent's investment increases in the project cost. This is so

because approval under a higher cost requires either a larger investment or a higher number

of successful signals, or both. So, in order to keep the principal's signal threshold at exactly 1

(j∗ = 1), the agent increases investment and decreases information acquisition as the project

cost goes up.

Next, let us consider the principal's commitment to a decision rule. By such commitment,

the principal sets the threshold for project approval, jc, ex ante. The decision rule must have

a threshold nature, as otherwise the agent would simply withhold successful signals.

When the principal commits to the threshold jc, the agent's best response it to invest

k(jc) = ⌊n−jc+1
2

⌋ and to allocate the rest of the budget to information acquisition (see the

proof of Proposition 3 for details). So the principal's optimal commitment threshold jc solves

the following program:

max
j′∈{1,..,n−1}

n−k(j′)∑
j=j′

Pr(j|k(j′), n)
(k(j′) + j + 1

n+ 2
− c
)
, (5)

Solving this problem yields the following Proposition.

Proposition 3. Let n ≥ 3 and c ∈ [1
2
, n+1
n+2

] and suppose that the principal can commit to

approval threshold.

The principal's equilibrium commitment threshold is jc = 1 if n is even and jc = 2 if n is

odd. The agent invests k = ⌈n−1
2
⌉.

The key factor driving the result of Proposition 3 is that the agent's optimal investment

level is decreasing in the principal's approval threshold. Hence, to induce a larger investment

the principal commits to a low approval threshold, even though this may hurt the principal

ex-post when the number of realized signal successes is low.

At the same time, Proposition 3 illustrates the limits of the principal's commitment power:

the principal cannot induce the agent to spend more than half of his budget on investment.

So, there remains a considerable gap between the outcome under the principal's commitment

and the �rst-best allocation of all budget to investment.

The comparison of the agent's and the principal's payo�s under di�erent commitment sce-

narios, and in the baseline no-commitment is provided in the following Proposition.

Proposition 4. Suppose that c ∈ [ n+4
2(n+2)

, n+1
n+2

] and n ≥ 3.

(i) The principal prefers agent's commitment to her own commitment, and her own com-

mitment to the equilibrium outcome without commitment.
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(ii) The agent prefers both principal's commitment and his own commitment to the equilib-

rium outcome without commitment.

It is of course interesting to inquire whether a combination of commitments -considered so

far separately -can be used to achieve a better outcome. To highlight this issue, we provide a

result showing that the principal does not get any additional bene�t from her own ability to

commit to a decision rule when the agent can commit to full signal disclosure.

Corollary 1. Consider c ∈ [1
2
, n+1
n+2

] and suppose that the agent is able to commit to full signal

disclosure. Then the principal's payo� and the investment level are higher when the principal

does not commit to a decision rule than under the principal's commitment to a decision rule.

The intuition behind this Corollary is as follows. When the principal commits to an ap-

proval threshold, only disclosed successful signals a�ect the outcome, and therefore the agent's

investment is the same as under the principal's commitment only, which is less than the invest-

ment under the agent's commitment. So, the principal's additional commitment to a decision

rule undermines strong investment incentives that the agent has under her own commitment

to disclosure. Therefore, an additional commitment to an approval threshold does not bene�t

the principal when the agent can commit to signal disclosure.

In the last part of this section we extend the analysis of commitment in another direction

by considering the situation where the principal can impose a restriction on the agent's budget

allocation. This possibility appears to be quite intuitive. For example, top managers in an

organization typically have the authority to restrict budget decisions of lower-level managers.

To understand the e�ect of such restrictions, we consider a setting in which the principal

can set a cap on information acquisition. Formally, she has an ability to �x an upper limit

ℓ on the budget that the agent can spend on acquiring signals.13 Besides being practically

intuitive, this extension is interesting for another reason. Recall that the �rst-best solution

involves allocating all budget to productive investment. This suggests that the principal may

want to set the budget limit ℓ on information acquisition as low as possible. However, imposing

a very low ceiling on information acquisition or prohibiting it outright is counterproductive.

Indeed, with a low ceiling the project would be approved with very few or even no successful

signal realizations. But since the agent's investment is not observable, this would exacerbate

the moral hazard problem and result in a very low or zero investment.

In contrast, requiring the agent to deliver successful signal realization(s) has a positive

incentive e�ect on investment which implies that the optimal budget cap on informational

acquisition should not be too low. This intuition is behind the following Proposition which

shows that the optimal budget cap is binding and is below the equilibrium level of information

acquisition in the baseline no-commitment case characterized in Proposition 1.

13A commitment to exact information acquisition level would result in the same outcome since in equilibrium
characterized in Proposition 5 the budget cap on information acquisition is binding.
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Proposition 5. Suppose that the principal can set a cap on the budget used by the agent

for information acquisition and that c ∈
[
n+3−

√
n+3

n+2
, n
n+2

]
. The optimal such cap is ℓe =

n + 2 − ⌈c(n + 2)⌉. In equilibrium the cap is binding: the agent obtains ℓe signals and spends

the remainder of the budget, ⌈c(n+2)⌉ − 2, on productive investment. The project is approved

if the agent discloses at least one success i.e., j∗ = 1.

Intuitively, the optimal budget cap on information acquisition, ℓ∗ = n + 2 − ⌈c(n + 2)⌉, is
such that the corresponding approval threshold j∗ remains positive when the agent invests the

remaining budget ⌈c(n+2)⌉−2. This investment level and the associated principal's payo� are

higher than in the equilibrium of the baseline no commitment scenario (Proposition 1). So, the

principal bene�ts from his ability to restrict information acquisition. However, this bene�cial

e�ect is limited and a higher investment cannot be supported in an equilibrium, since it would

cause the principal's threshold on the number of successful signals required for approval to

become zero, which would in turn cause investment to fall to zero. This �unraveling� argument

implies that a lower cap on information acquisition would undermine agent's incentives and

result in zero investment.

The outcome with the optimal cap on information acquisition is the same as the outcome

with the agent's commitment to disclosure, albeit under more restrictive cost conditions. Es-

sentially, both commitment policies allow to implement the maximal possible investment level

⌈c(n + 2)⌉ − 2. which is around a half of the budget when c is close to 1
2
, yet increases as

cost c increases but never attains the �rst-best. A higher investment level cannot be achieved

with any contract or commitment, because it would be inconsistent with positive approval

threshold j which is necessary to provide the incentives for the agent to invest. So, ine�ciency

is fundamental to this problem.

.

V Conclusions

In this paper we have studied the interaction between productive investment and acquisition

of information for persuasion. We have demonstrated that persuasion motive leads to an

ine�cient allocation of resources favoring information acquisition. Further, we have shown

that the equilibrium under sequential resource allocation is the same as under a simultaneous

one-time resource allocation procedure. The logic of this result suggests that experimentation

that allows to learn about the quality of the project may not be valuable in a broad set of

circumstances when the alternative to experimentation involves activities that improve the

project's return and productivity.

The ine�ciency of the allocation can be curtailed, albeit only partially, by the agent's

commitment to information disclosure and the principal's commitment to a decision rule as a

function of information disclosure.
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Our analysis assumes that the agent's preferences are state-independent: the agent wants

the principal to implement the project irrespective of the implementation cost. In Appendix

B we consider a more general preference speci�cation according to which the agent cares both

about the project adoption and the net pro�t from the project. There are two takeaways from

this analysis in the setting with static budget allocation. First, the equilibrium investment

increases in preference alignment, and so a closer alignment of the players' preferences increases

the e�ciency of resource allocation. Second, the main message of Theorem 1 continues to

hold if the preferences are not too aligned. In particular, even if the agent cares relatively

strongly about the net pro�t, he has an incentive to acquire more signals as the project cost

increases, especially when this cost is high. So the agent shifts resources towards persuasion

and information acquisition when the project cost increases.

Another natural extension is to introduce a monetary transfer scheme in the principal-agent

relationship. In particular, such transfers could be contingent on signal disclosure. Other

avenues for future research involve studying the tradeo� between productive and informational

activities in a framework with unveri�able information such as in Crawford and Sobel (1982)

and in a setting where the agent can choose an information structure as in Kamenica and

Gentzkow (2011).
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VI Appendix A

Proof of Lemma 1 If r′ ≤ n − k∗, then the principal's posterior beliefs about θ are charac-

terized by the probability density function:

f(θ|k∗, n− k∗, j′) =
Pr(j′|n− k∗, θ)(k∗ + 1)θk

∗∫ 1

0
Pr(j′|n− k∗, θ)(k∗ + 1)θk∗dθ

=

(
n−k∗

j′

)
θj

′
(1− θ)n−k∗−j′(k∗ + 1)θk

∗∫ 1

0

(
n−k∗

j′

)
θj′(1− θ)n−k∗−j′(k∗ + 1)θk∗dθ

= θk
∗+j′(1− θ)n−k∗−j′ (n+ 1)!

(k∗ + j′)!(n− k∗ − j′)!
.

(6)

Correspondingly, the principal's expectation of θ is given by:

EP (θ|k∗, n− k∗, j′) =

∫ 1

0

θf(θ|k∗, n− k∗, j′)dθ

=

∫ 1

0

θk
∗+j′+1(1− θ)n−k∗−j′dθ

(n+ 1)!

(k∗ + j′)!(n− k∗ − j′)!
=
k∗ + j′ + 1

n+ 2
. (7)

If r′ > n − k∗, then the principal's posterior beliefs about θ are characterized by the

probability density function:

f(θ|mj′

r′) =
n−r′∑
i=0

µi
w(r

′, j′)
Pr(j′|n− i, θ)(i+ 1)θi∫ 1

0
Pr(j′|n− i, θ)(i+ 1)θidθ

=
n−r′∑
i=0

µi
w(r

′, j′)

(
n−i
j′

)
θj

′
(1− θ)n−i−j′(i+ 1)θi∫ 1

0

(
n−i
j′

)
θj′(1− θ)n−i−j′(i+ 1)θidθ

=
n−r′∑
i=0

µi
w(r

′, j′)θi+j′(1− θ)n−i−j′ (n+ 1)!

(i+ j′)!(n− i− j′)!
. (8)

Correspondingly, the principal's expectation of θ satis�es:

EP (θ|mj′

r′) =
n−r′∑
i=0

µi
w(r

′, j′)

∫ 1

0

θi+j′+1(1− θ)n−i−j′dθ
(n+ 1)!

(i+ j′)!(n− i− j′)!

=
n−r′∑
i=0

µi
w(r

′, j′)
i+ j′ + 1

n+ 2
≤ n− r′ + j′ + 1

n+ 2
. (9)
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Q.E.D.

Proof of Lemma 2: First, note that the agent's optimal disclosure strategy maximizes the

principal's posterior expectation of θ given by (7) if r′ ≤ n− k∗ or (9) if r′ > n− k∗.

Let us start with case (i) in which the agent acquires (weakly) less than the equilibrium

number of signals r∗ = n− k∗. Then, no matter what he discloses, according to Property 1 the

principal believes that with probability 1 the agent has invested k∗ units.

So, if the agent discloses all signals, which includes j′ successes, then according to (7) the

principal's posterior expectation of θ is equal to EP (θ|k∗, n− k∗, j′) = k∗+j′+1
n+2

,

On the other hand, if the agent makes a disclosure mj′′

r′′ that includes j
′′ successes and r′′

signals where j′′ ≤ j′ and r′′ ≤ r′ then, again by (7), the principal's posterior expectation of θ is

equal to EP (θ|k∗, n−k∗, j′′) = k∗+j′′+1
n+2

. Since the latter is less than EP (θ|k∗, n−k∗, j′) = k∗+j′+1
n+2

as j′′ ≤ j′, such deviation is not pro�table.

Now consider case (ii) in which r′ > r∗ = n − k∗. If the agent chooses to disclose r∗ =

n−k∗ signals and min{j, n−k∗} successes, then according to Property 1 the principal believes

that with probability 1 the agent has invested k∗ units. So, by (7) the principal's posterior

expectation of θ is equal to EP (θ|k∗, n−k∗, j′) = k∗+min{j′,n−k∗}+1
n+2

. Thus, to complete the proof

we need to show that the principal's posterior expectation under any alternative disclosure

strategy cannot exceed k∗+min{j′,n−k∗}+1
n+2

.

First, if j′ ≥ n− k∗, then by (7) disclosing r∗ = n− k∗ signals and n− k∗ successes induces

the principal's posterior expectation equal to n+1
n+2

. On the other hand, if the agent follows

any alternative disclosure strategy mj′′

r′′ s.t. r
′′ > n − k∗, then according to (9) the principal's

posterior expectation of θ does not exceed n−r′′+j′′+1
n+2

. The latter expression does not exceed
n+1
n+2

since j′′ ≤ r′′. So deviating from disclosure mn−k∗

n−k∗ is not pro�table.

Next, suppose that r′ > n − k∗ and j′ < n − k∗. Then by making a disclosure mj′′

r′′ where

r′′ ≤ n−k∗ and j′′ ≤ j′, the agent induces the principal's posterior expectation equal to k∗+j′′+1
n+2

by (7). The latter does not exceed k∗+j′+1
n+2

, the principal's posterior expectation of θ when the

agent discloses n−k∗ signals and j′ successes. Therefore, such disclosure mj′′

r′′ where r
′′ ≤ n−k∗

and j′′ ≤ j′, is suboptimal.

Finally, suppose that the agent's disclosure mj′′

r′′ is such that r′′ > n− k∗ and j′′ ≤ j′. Then

by (9) the principal's posterior expectation does not exceed n−r′′+j′′+1
n+2

which, in turn, is less

than k∗+j′+1
n+2

. The latter is the principal's posterior after disclosure mj′

n−k∗ . So we conclude

that the disclosure mj′′

r′′ is suboptimal.

Finally, since the agent's optimal disclosure is always such that r′′ ≤ k∗, it follows by

Property 1 that the principal believes that the agent has invested k∗ units with probability 1.

Q.E.D.

Proof of Lemma 3: First, for c > n+1
n+2

there is no budget allocation resulting in E(θ|·) > n+1
n+2

.

So, the principal optimally chooses k∗ = 0 and the equilibrium approval probability is zero.

The principal is indi�erent between acquiring any number of signals (conducting any number of
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trials) as no signal realization ever leads to the project approval: in the best possible scenario

� when all trials are successes � the expected value of θ is n+1
n+2

.

Consider now c ≤ n+1
n+2

. Suppose that the principal invests n units. Then, the expected

payo� is given by n+1
n+2

− c ≥ 0. Now, suppose that the principal chooses k < n invested units

instead. Then, her expected payo� is

n−k∑
j=0

Pr(j|k, n)max{0, [E(θ|k, j, n)− c]} =
n−k∑
j=0

Pr(j|k, n)max

{
0,

[
j + k + 1

n+ 2
− c

]}

<
n−k∑
j=0

Pr(j|k, n)max

{
0,

[
n+ 1

n+ 2
− c

]}
≤ n+ 1

n+ 2
− c

Thus, the principal maximizes her payo� by choosing investment k = n. Q.E.D.

Proof of Lemma 4: Suppose that c ≤ n+1
n+2

and the agent invests n in equilibrium. Then there

is no budget left for signal acquisition i.e., r = 0, and there is no disclosure in equilibrium.

Given that the principal believes that all budget has been invested, she approves the project.

But then the agent has a pro�table deviation to k = 0 which saves her the �xed cost of

investment b, a contradiction.

Now suppose that c > n+1
n+2

. In this case, EP (θ|k, n) ≤ n+1
n+2

under any budget allocation

(k, n − k), so the principal never approves the project. Hence, the agent's optimal strategy

must involve choosing k = 0 to save the cost b. Thus, there is no equilibrium with k∗ = n.

Q.E.D.

Proof of Proposition 1:

At �rst, let us establish the following Lemma.

Lemma 5. Let Pr(j ≥ j′|k, n) be the probability of obtaining at least j′ successful signals under
the allocation (k, n), where j ≤ n− k. We have:

Pr(j ≥ j′|k, n) = 1− (k + j′)!(n− k)!

(n+ 1)!(j′ − 1)!
. (10)

Proof of Lemma 5:

First, let us compute Pr(j|k, n), the probability of obtaining j successful signals under the

allocation (k, n), where j ≤ n− k. We have:

Pr(j|k, n) =
∫ 1

0

Pr(j|k, n, θ)Pr(θ|k)dθ =

=

∫ 1

0

(
n− k

j

)
θj(1− θ)n−k−j(k + 1)θkdθ =

(k + 1)(j + k)!(n− k)!

j!(n+ 1)!
.
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Summing up yields:

Pr(j ≥ j′|k, n) = 1−
j′−1∑
j=0

Pr(j|k, n) = 1−
j′−1∑
j=0

(k + 1)(j + k)!(n− k)!

j!(n+ 1)!

= 1− (k + 1)(n− k)!

(n+ 1)!

j′−1∑
j=0

(j + k)!

j!
= 1− (k + 1)(n− k)!

(n+ 1)!

(k + j′)!

(k + 1)(j′ − 1)!
=

1− (k + j′)!(n− k)!

(n+ 1)!(j′ − 1)!
, (11)

where the second-to-last equality relies on the identity for the sum of partial factorials saying

that
∑j′−1

j=0
(j+k)!

j!
= (k+j′)!

(k+1)(j′−1)!
. This completes the proof of the Lemma.

Next, the equilibrium level of investment k∗ solves the program (4). Let us at �rst ignore

the �xed cost b and solve the following problem:

max
k∈{0,..,n−j∗}

Pr(j ≥ j∗|k, n). (12)

The solution k∗ to this problem is such that the agent would never deviate from k∗ to any other

positive investment level. Then we show that provided that Assumption 1 holds, a deviation

to zero investment is also unpro�table.

By equation (10 ) in Lemma 5, the objective in (12) is equal to:

1− (k + j∗)!(n− k)!

(j∗ − 1)!(n+ 1)!
, (13)

Thus,

k∗ ∈ arg min
k∈{0,...,n−j∗}

(k + j∗)!(n− k)! (14)

To solve the problem (14), let us �rst allow k ∈ [0, n− j∗]. Then the objective of (14) can

be rewritten as

D(k, j∗, n) ≡ Γ(k + j∗ + 1)Γ(n− k + 1) ≡
∫ ∞

0

xk+j∗e−xdx×
∫ ∞

0

xn−ke−xdx

Note that

dD(k, j∗, n)

dk
= (log(k + j∗)− log(n− k)) Γ(k + j∗ + 1)Γ(n− k + 1) (15)

It follows from (15) that dD(k,j∗,n)
dk

< 0 (dD(k,j∗,n)
dk

> 0) if k < n−j∗

2
(k > n−j∗

2
) and dD(k,j∗,n)

dk
= 0

if k = n−j∗

2
. Hence, D(k, j∗, n) attains a unique minimum at k = n−j∗

2
. Also note that, for

�xed (j∗, n), D(k, j∗, n) is symmetric around k = n−j∗

2
. Therefore, k∗ minimizing (14) over
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{0, ..., n− j∗} satis�es:

n− j∗ − 1

2
≤ k∗ ≤ n− j∗ + 1

2
. (16)

Since j∗ := ⌈c(n+ 2)⌉ − (k∗ + 1) by Lemma 1, we can substitute this into (16) to obtain:

n− ⌈c(n+ 2)⌉ ≤ k∗ ≤ n+ 2− ⌈c(n+ 2)⌉. (17)

Note that we must have j∗ ≥ 1 since an equilibrium with k∗ > 0 and j∗ = 0 cannot be supported

because in this case the agent would deviate to save the �xed cost b > 0 of investment. Using

(17), the condition j∗ ≥ 1 can be rewritten as:

k∗ ≤ ⌈c(n+ 2)⌉ − 2. (18)

In the rest of the proof, we characterize equilibria for di�erent cost ranges and n ≥ 3.

Case 0. c > n+1
n+2

. In this case, the principal never approved the project since 1+j+k
n+2

< c for

any j and k. Also, k∗ = 0 by (17).

Case 1. either n is even and c ∈ (1
2
, n
n+2

], or n is odd and c ∈ ( n+3
2(n+2)

, n
n+2

].

In this case, n+ 2− ⌈c(n+ 2)⌉ ≤ ⌈c(n+ 2)⌉ − 2, so (18) holds if (17) holds. Therefore, the

equilibrium k∗ is determined only by (17). Since (17) has multiple solutions, we will focus on

a Pareto e�cient equilibrium with the highest investment where

k∗ = (n+ 2)− ⌈c(n+ 2)⌉.

Case 2. n is even and c ∈ ( n
2(n+2)

, 1
2
]. In this case, n − ⌈c(n + 2)⌉ = n

2
− 1 = ⌈c(n + 2)⌉ −

2 < n + 2 − ⌈c(n + 2)⌉. Hence, there is a unique equilibrium with a positive investment

k∗ = n− ⌈c(n+ 2)⌉ = n
2
− 1.

Case 3. n is odd and c ∈ ( n+1
2(n+2)

, n+3
2(n+2)

].

Note that n+1
2(n+2)

< 1
2
. In this case, n − ⌈c(n + 2)⌉ = n−3

2
< n−1

2
= ⌈c(n + 2)⌉ − 2 < n+1

2
=

n+ 2− ⌈c(n+ 2)⌉. So there are two values of k∗ that satisfy both (17) and (18), of which we

choose the larger one:

k∗ = ⌈c(n+ 2)⌉ − 2 =
n− 1

2
. Hence, j∗ = 1.

Let us show that in Cases 1-3 the agent does not wish to deviate from k∗ to k = 0 when

Assumption 1 holds i.e., b ≤ n−2
n(n+1)

. In fact, we will show that the agent prefers investment

k = 1, with r = n−1 to k = 0 and r = n under the same j, which then implies that she prefers

k∗ to k = 0.

By (10), the probability of obtaining at least j successes with k = 0 is Pr(j′ ≥ j|k =

0, r = n − k) = 1 − j
n+1

, while the probability of obtaining at least j successes with k = 1, is
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Pr(j′ ≥ j|k = 1, r = n− k − 1) = 1− (j+1)j
(n+1)n

. Then,

Pr(j′ ≥ j|k = 1, r = n− 1)− Pr(j′ ≥ j|k = 0, r = n) =
j(n− j − 1)

n(n+ 1)
. (19)

Note that from the principal's best response (3), c ≤ n
n+2

and k∗ ≥ 1 it follows that j∗ ≤ n− 2.

On the domain j ∈ {1, ..., n−2}, (60) reaches a minimum n−2
n(n+1)

both at j = 1 and at j = n−2.

Thus, if b < n−2
n(n+1)

and n ≥ 3, the agent prefers investment k = 1 to no investment, and so a

priori she would not deviate from k∗ > 0 to k = 0.

Now consider n = 2. In this case, the cost interval (1
2
, n+1
n+2

] is (1
2
, 3
4
]. The only candidate

for an equilibrium with positive investment is k = 1 and j = 1. But in this case the value of

(60) is zero, so the agent would choose k = 0, r = 2, instead. So, there is no equilibrium with

a positive investment. However, we have an equilibrium k∗ = 0, r∗ = 2 and j∗ = 2. The latter

holds by (3). Note that when c = 1
2
, we have an equilibrium k∗ = 0, r∗ = 2, j∗ = 1. Q.E.D.

Proof of Theorem 2.

The proof for the case n = 2 is trivial, for in the sequential setting with n = 2 the unique

optimal action in the last period t = 2 is to acquire a signal. Then investing in t = 1 is optimal

if and only if k∗ = 1 in the static setting.

So, for the rest of the proof we assume that n ≥ 3. We start with several preliminary steps.

First, the principal's optimal decision rule after disclosure remains the same as in the

simultaneous budget allocation case given by (3). So, if the principal believes that the agent

has invested k∗ and obtained n− k∗ signals of which d are successes, she approves the project

if d ≥ j∗ = ⌈c(n+ 2)⌉ − (k∗ + 1).

Further, the agent observes the history at any period t ∈ {1, ..., n} which consists of the

allocations made by the agent and the realizations of the acquired signals in every time period

s ∈ {1, .., t− 1}. Any two histories at period t that include the same total investment and the

same number of successful signals result in the same agent's beliefs about θ, and so the agent's

optimal strategy at any period t depends only on the �state� at time t, which is de�ned as a

triple (k, d, r), where k is the total investment made before t, d is the number of successful

signals and r is the number of unsuccessful signals acquired before t. Note that k+d+r = t−1

since one budget unit is allocated in every period.

If the state (k, d, r) associated with time period t is such that k + r > n− j∗, then d < j∗

and the agent does not have enough budget to acquire j∗− d signals necessary to persuade the

principal. Then acquiring signals at any t′ ≥ t is optimal, and any strategy is optimal if k > 0.

The unique optimal strategy to acquire signals at all t′ ≥ t if k + r = n − j∗ because in this

case the agent can only persuade the principal if she spends the remaining budget j∗ − d on

signals and they all turn out to be successes.

Let us now focus on the case where the state is such that k+r < n−j∗. The proof proceeds
through three claims. Claims 1 and 3 establish the Theorem. Claim 2 is an intermediate step

28



to prove Claim 3.

Claim 1. Suppose that the state (k, d, r) at time period t is such that k ≥ k∗ and k+r < n−j∗.
Then the agent's optimal continuation strategy is to acquire a signal at any t′ ∈ {t, ...n}.

Proof of Claim 1.

Let us de�ne two continuation strategies starting from any time period t ∈ {1, ..n}. The

continuation strategy σt
S prescribes that the agent acquires a signal in any period t′ ∈ {t, ..., n}.

The continuation strategy σt
I prescribes that the agent invests in period t and then acquires a

signal in any period t′ ∈ {t+1, ..., n}. Let us show that the agent's expected payo� from σt
S is

greater than his payo� from σt
I .

Let z = k − k∗ and s := k + d. We refer to s as the number of positive outcomes. The

agent's posterior belief given s positive outcomes and r signal failures is characterized by the

following density:

f(θ|s, r) =
(
s+r
s

)
θe(1− θ)r∫ 1

0

(
s+r
s

)
θe(1− θ)rdθ

= θe(1− θ)r
(r + s+ 1)!

r!s!
. (20)

Since the agent's remaining budget at time t is n− (s+r), by following strategy σt
S she obtains

j successes with the following probability:

Pr(j|s, r) =
∫ 1

0

(
n− (s+ r)

j

)
θj(1− θ)n−(s+r)−jf(θ|s, r)dθ =

(j + s)!(s+ r + 1)!(n− j − s)!
(
n−s−r

j

)
(n+ 1)!r!s!

.

(21)

Next, consider continuation strategy σt
I . The posterior distribution of θ after the agent invests

the s + 1-th unit is characterized by the density: f(θ|s + 1, r) = θs+1(1 − θ)r (r+s+2)!
r!(s+1)!

. So the

probability of obtaining at least j successes under strategy σt
I is:

Pr(j|s+ 1, r) =
(j + s+ 1)!(r + s+ 2)!(n− (j + s+ 1))!

(
n−r−s−1

j

)
(n+ 1)!r!(s+ 1)!

. (22)

Strategy σt
S is more pro�table than σt

I i�
∑n−(s+r)

j=j∗−d Pr(j|s, r)−
∑n−(s+r+1)

j=j∗−d Pr(j|s+1, r) ≥ 0.

To compute this di�erence, �rst, note that for j ∈ {j∗ − d, ..., n− (s+ r + 1)}, we have:

Pr(j|s, r)− Pr(j|s+ 1, r) = (23)

(j + s)!(r + s+ 1)!(n− (j + s+ 1))!
(
(s+ 1)(n− j − s)

(
n−r−s

j

)
− (j + s+ 1)(r + s+ 2)

(
n−r−s−1

j

))
(n+ 1)!r!(s+ 1)!

.

From (23) it follows that:

n−(s+r)∑
j=j∗−d

Pr(j|s, r)−
n−(s+r+1)∑
j=j∗−d

Pr(j|s+ 1, r) =
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(j∗ − n+ r + 2s− d+ 1)
(r + s+ 1)!(j∗ + s− d)!(n− (s+ r + 1))!(n− j∗ − s+ d)!

(n+ 1)!r!(s+ 1)!(j∗ − d− 1)!(n− j∗ − r − s+ d)!
.

(24)

Since r+ k < n− j∗, n− j∗ − r− s+ d = n− j∗ − r− k > 0. Hence, the sign of the expression

(24) is the same as the sign of j∗ − n+ r + 2s− d+ 1. Further,

j∗ − n+ r + 2s− d+ 1 = j∗ + 2k∗ − n+ 2z + d+ 1 + r ≥ 2z + d+ r ≥ 0 (25)

The �rst inequality in (25) holds because by (16) j∗ + 2k∗ ≥ n− 1. So, strategy σt
S dominates

the strategy σt
I for the agent, strictly if z + d+ r > 0.

Let us now show that the optimal strategy requires the agents to acquire a signal in any

time period t where the state is such that k ≥ k∗. The argument is by induction. If the state

(k, d, r) at t = n is such that k ≥ k∗, then (25) implies that at t = n it is optimal to acquire

a signal. Now consider t = n − 1. It is optimal to acquire a signal at t = n − 1 when the

investment level k at t = n − 1 satis�es k ≥ k∗ because σt
S dominates σt

I and at t′ = n it is

optimal for the agent to acquire a signal.

Now consider time period t < n− 1 and suppose the investment level k at this time period

is at least k∗, and the agent's strategy is to acquire signals at any t′ ∈ {t + 1, n}. Since, as

shown above, σt
S dominates σt

I at t, the optimal strategy it to acquire a signal at t. Hence,

starting at any t with state of the world (k, d, r) s.t. k ≥ k∗, the optimal continuation strategy

it to acquire a signal at any t′ ∈ {t, ..., n}. This establishes Claim 1. Q.E.D.

Claim 2. Suppose that the state (k, d, r) at time period t ∈ {1, .., n − 2} satis�es d < j∗,

k + d < k∗, and k + r < n − j∗. Consider two continuation strategies. Under the �rst

continuation strategy, σk,d,r
1 , the agent invests at t and obtains a signal at any t′ > t. The

second continuation strategy, σk,d,r
2 , prescribes to obtain a signal at t. If this signal is a success,

the agent acquires a signal at any t′ > t. If the signal acquired at t is a failure, the agent invests

at t+ 1 and then obtains a signal at any t′ ∈ {t+ 2, ..., n}.
Let π(σk,d,r

i ) denote the agent's expected payo� from the continuation strategy σ
(kd,r)
i , i ∈

{1, 2} and ∆σk,d,r ≡ π(σk,d,r
1 )− π(σk,d,r

2 ).

For any k, d, there is a unique r̂ > 0, k + d+ r̂ ≤ n− 3, s.t. ∆σk,d,r > 0 for all r ≤ r̂ and

∆σk,d,r < 0 for all r > r̂. Also, if ∆σk,d,r ≥ 0, then ∆σk,d+1,r > 0.

Proof of Claim 2. Let s = k + d and

q := E(θ|s, r) =
∫ 1

0

θs+1(1− θ)r
(r + s+ 1)!

r!s!
dθ =

s+ 1

s+ r + 2
(26)

Then,

π(σk,d,r
1 ) =

n−(s+r+1)∑
j=j∗−d

Pr(j|s+ 1, r), (27)
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π(σk,d,r
2 ) = q

n−(s+r+1)∑
j=j∗−d−1

Pr(j|s+ 1, r) + (1− q)

n−(s+r+2)∑
j=j∗−d

Pr(j|s+ 1, r + 1). (28)

∆σk,d,r ≡ π(σd,r
1 )− π(σd,r

2 ) = −qPr(j = j∗ − d− 1|s+ 1, r)+

(1− q)

n−(s+r+1)∑
j=j∗−d

Pr(j|s+ 1, r)−
n−(s+r+2)∑
j=j∗−d

Pr(j|s+ 1, r + 1)

 . (29)

Applying (22) yields:

Pr(j|s+ 1, r)− Pr(j|s+ 1, r + 1) =
(j + s+ 1)!(r + s+ 2)!(n− (j + s+ 1))!

(n+ 1)!(r + 1)!(s+ 1)!
×(

(r + 1)

(
n− (r + s+ 1)

j

)
− (r + s+ 3)

(
n− (r + s+ 2)

j

))
. (30)

Using (30) and the fact that Pr(j = n− (s+ r+1)|s+1, r+1) = 0, we can rewrite the second

term in (29) as follows:

n−(s+r+1)∑
j=j∗−d

Pr(j|s+ 1, r)−
n−(s+r+2)∑
j=j∗−d

Pr(j|s+ 1, r + 1) =

n−(s+r+1)∑
j=j∗−d

(Pr(j|s+ 1, r)− Pr(j|s+ 1, r + 1)) =

(j∗ − d)(r + s+ 2)!(j∗ − d+ s+ 1)!(d− j∗ + n− s)!((r + s+ 3)
(
n−r−s−2

j∗−d

)
− (r + 1)

(
n−r−s−1

j∗−d

)
)

(n+ 1)!(r + 1)!(s+ 1)!(d(r + s+ 3)− j∗(r + s+ 3) + (s+ 2)(n− r − s− 1))
.

(31)

Using (22) we can also compute:

− qPr(j = j∗ − d− 1|s+ 1, r) = −
(r + s+ 1)!(j∗ − d+ s)!(d− j∗ + n− s)!

(
n−r−s−1
j∗−d−1

)
(n+ 1)!r!s!

. (32)

Substituting (31) and (32) into (29) yields:

∆σk,d,r = (s+ 1− (j∗ − d)(j∗ − d− n+ r + 2s+ 1)) ·
(r + s+ 1)!(j∗ − d+ s)!(n− (r + s+ 2))!(n+ d− j∗ − s)!

(n+ 1)!r!(s+ 1)!(j∗ − d− 1)!(n+ d− j∗ − r − s)!
. (33)

By (33), ∆σk,d,r ≥ 0 if and only if

k + d+ 1− (j∗ − d)(j∗ − d− n+ r + 2(k + d) + 1) ≥ 0. (34)

Note that the left-hand side of (34) is strictly increasing in d. So, if∆σk,d,r ≥ 0, then∆σk,d+1,r >

0, as claimed.

Since j∗ − d > 0, the left-hand side of (34) is decreasing in k and r. So, to complete Step 1

it is enough to show that (34) holds at r = 1 and the maximal possible k equal to k∗ − 1− d
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(recall that by assumption k + d < k∗). In this case, (34) becomes:

k∗ − (j∗ − d)(j∗ − d− n+ 2k∗) ≥ 0. (35)

The inequality (35) holds strictly since j∗ + 2k∗ ≤ n− 1 by (16). This completes the proof of

Claim 2.

Claim 3. Consider some period t ∈ {1, ..., k∗} and suppose that the state is k = t − 1, d =

0, r = 0 (i.e., the agent has invested in all previous periods). Then it is optimal to invest at t.

Note that k∗ ≤ n−1
2

for odd n and k∗ ≤ n
2
− 1 for even n. So, t ≤ k∗ ≤ n− 2 for all n ≥ 3,

and hence the strategies σ
(k,d,r)
i , i ∈ {1, 2} are feasible at all t ∈ {1, ..., k∗}, and Claim 2 applies.

The rest of the proof is by contradiction. So suppose that it is optimal for the agent to

acquire a signal at t.

Then there is t′, t < t′ < n, and a history h′(t′) -in which the agent invests at any t ∈
{0, ..., t − 1}, acquires a signal at t and allocates the budget optimally at s ∈ {t, ..., t′ − 1} -

such that it is optimal to invest at t′.

Such t′ exists because if it was optimal for the agent to acquire a signal at any s ≥ t, when

the state at t is k = t− 1, d = 0, r = 0, then this would contradict the optimality of investing

k∗ in the static case.

Furthermore, we can choose t′ and the history h(t′) s.t. t′ < n and at any s, s > t′, it is

optimal to acquire a signal. Such t′ exists because it is optimal to acquire a signal at s = n.

In the sequel we will establish that the agent can increase her payo� by using a di�erent

strategy that involves reallocation of the investment at t′ to an earlier period, implying that it

cannot be optimal to acquire a signal at t.

There are four possible cases to consider:

(a) the agent acquires a signal at t′ − 1 and invests at t′ no matter what the realization of

the signal acquired at t′ − 1;

(b) the agent acquires a signal at t′ − 1 and invests at t′ if this signal is a failure, and

acquires a signal at t′ if this signal is a success;

(c) the agent acquires a signal at t′ − 1 and invests at t′ if this signal is a success, and

acquires a signal at t′ if this signal is a failure;

(d) the agent invests at t′ − 1 and at t′;

Below, we establish that in cases (a)-(d) the agent has a pro�table deviation from the

candidate optimal strategy.

Case a.

The optimal continuation strategy in case (a) requires the agent to acquire a signal at t′−1,

to invest at t′, and acquire a signal at any s, s > t. This strategy is not optimal because it is

dominated by the following continuation strategy: invest at t′ − 1 and acquire a signal at any

s ∈ {t′, ..., n}. This claim is true since under both continuation strategies a signal acquired

at s, s > t′ has the same probability of success. However, the signal acquired at time period
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t′ following the alternative continuation strategy has a higher probability of success than the

signal acquired at time period t′ − 1 according to the original continuation strategy. So, the

probability of approval is higher under the alternative strategy.

Case b.

In this case, the agent's optimal continuation strategy starting at t′−1 is to acquire a signal

at t′−1; at t′ to invest if the signal acquires at t′−1 is a failure and to acquire a signal if the last

signal is a success; to acquire a signal at any s, s ∈ {t′ + 1, ..., n}. Therefore, the continuation
strategy σk′,d′,r′

1 is optimal for the agent at t′ and, in particular, dominates the strategy σk′,d′,r′

2 .

So, ∆σk′,d′,r′ ≥ 0. As shown in Step 1 of Claim 2, ∆σk′,d′,r′ ≥ 0 implies that ∆σk′,d′+1,r′−1 > 0.

So continuation strategy σ1 strictly dominates the strategy σ2 at t′ − 1. But in our case (b)

the agent optimally follows the continuation strategy σ2 at t
′ − 1. A contradiction.

Case c.

In this case, if the signal acquired at t′−1 is a success, then the optimal continuation strategy

is to invest at t′ and acquire a signal at any s ∈ {t′ + 1, ..., n}. So, comparing strategies σt′
I

and σt′
S , σ

t′
I dominates σt′

S at t′ after a successful signal acquired at t′ − 1. Hence, the opposite

of the inequality (25) holds at t′ after a successful signal at t′ i.e., when the state is (k′, d′, r′).

So, we must have 2(k′ − k∗) + d′ + r′ + 2 ≤ 0.

Now, suppose that the signal at t′ − 1 is a failure. Then the state at t′ is (k′, d′ − 1, r′ + 1),

and so the following inequality (2(k′ − k∗) + d′ + r′ + 2 ≤ 0) still holds. Therefore, at t′ after a

successful signal acquired at t′ − 1, σt′
I dominates σt′

S . Therefore, the continuation strategy of

investing at t′ and acquiring signals at any s, s ∈ {t′+1, ..., n}, is optimal after any realization

of the signal at t′ − 1. But this strategy is strictly dominated by the strategy of investing at

t′−1 and acquiring signals at any s, s ∈ {t′, ..., n}. So, the original strategy cannot be optimal.

Case d.

Let t̂ ∈ {k∗ −w, ..., t′ − 1} be such that in history h′(t′) the agent acquires a signal at t̂ and

invest at any t ∈ {t̂+ 1, ..., t′}.
First, suppose that the agent's strategy prescribes investing at t̂ + 1 after any realization

of a signal at t̂ and subhistory h′(t′; t̂− 1) from time period 0 to time period t̂− 1. Then this

strategy cannot be optimal because the agent can strictly increase her payo� by following an

alternative strategy that coincides with the original one except at t̂ and t̂+ 1. The alternative

strategy prescribes to invest at t̂ after subhistory h′(t′, t̂); then to acquire a signal at t̂+ 1.

Now suppose that the agent's strategy prescribes to invest at t̂+ 1 after one realization of

a signal at t̂ and subhistory h′(t′; t̂ − 1), and to acquire a signal after the other realization of

the signal and subhistory h′(t′; t̂ − 1). Particularly, let us consider the case when the optimal

strategy prescribes to invest after a failed signal at t̂ and subhistory h′(t′; t̂− 1), and prescribes

to acquire a signal after a successful signal at t̂ and subhistory h′(t′; t̂ − 1). The proof in the

other case is the same.

First, suppose that the signal acquired at t̂ fails. Then the optimal strategy induces history

h′(t′). Let (k′, d′, r′) be the state at time t′ corresponding to the history h′(t′). Since it is
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optimal to invest at t′ and to acquire a signal at any period t, t > t′, strategy σt′
I is more

pro�table at t′ than σt′
S , and strategy σt′+1

S is more pro�table at t′+1 than σt′+1
I . By inequality

(25) established in Claim 1, this implies that 2(k′−k∗)+d′+r′+2 ≤ 0 ≤ 2(k′+1−k∗)+d′+r′+2.

Now suppose that the signal acquired at t̂ is a success and so the agent acquires another

signal at t̂ + 1. If the optimal strategy is such that in the sequel the agent always invests in

some period t, t̂ + 1 < t ≤ t′, the agent can improve his payo� by following an alternative

strategy which prescribes to invest at t̂ and acquire a signal at t and otherwise to follow the

same strategy. So, the optimal strategy with a positive probability induces a history h′′ s.t. the

investment k′′ made by t′ +1 in h′′ is less than investment in h by at least 2 units. So consider

the state of the world (k′′, d′′, r′′) at time t′+1 after history h′′. Then k′′+d′′+r′′ = k′+1+d′+r′

and k′′ ≤ k′ − 1. Therefore, 2(k′′ − k∗) + d′′ + r′′ + 2 ≤ 2(k′ − k∗) + d′ + r′ + 2 ≤ 0. It follows

that after history h′′ it is optimal to invest at t′ +1. But this contradicts the de�nition of t′ as

the latest investment period when the agent makes an investment. This completes the proof

of Claim 3.

The claim of the Theorem now directly follows from Claims 1 and 3.

Q.E.D.

Proof of Proposition 2: First, let us establish which strategies cannot be supported in an

equilibrium:

Claim 1: There is no equilibrium with j∗ = 0 and k∗ > 0.

Suppose to the contrary that there exist an equilibrium in which the agent chooses k∗ > 0

and obtains r∗ signals and the principal uses threshold j∗ = 0. Then the agent has a pro�table

deviation: choose k = 0 and obtain any number of signals to save the cost b > 0.

Claim 1 implies that there is no equilibrium with k∗ = n. Using Claim 1, we can now prove

the following claim:

Claim 2: If j∗ ≥ 1, the strategy of investing k′ > 0 and obtaining r′ > 0 signals s.t. k′+r′ < n

is dominated by a strategy of investing n− r′ and obtaining r′ signals.

The proof is obvious since investing n− r′ > k′ instead of k′ increases the probability that

any given signal is a success and hence raises the probability of the project approval.

Claims 1 and 2 imply that, if there exists an equilibrium with a positive investment k′ > 0,

then in this equilibrium the agent obtains n− k′ signals.

Next, to complete the proof that in equilibrium the agent invests k∗ = ⌈c(n + 2)⌉ − 2 and

commits to disclose n− k∗ signals, while the principal uses approval threshold j∗ = 1, we rule

out two types of deviations: (i) investing zero; (ii) investing k′ > 0, k ̸= k∗.

Claim 3: Deviation to k = 0 from k∗ = ⌈c(n+ 2)⌉ − 2 is unpro�table for the agent.

Suppose that the agent deviates to k = 0 and r signals, which are then disclosed. Given the

principal's approval threshold j′ ≤ n, after this disclosure and actual investment level k = 0,

the principal approves the project with probability 1− j′

r+1
≤ 1− j′

n+1
.

In the candidate equilibrium, j∗ = 1 and the probability of persuading the principal is

1− (k∗+1)!(n−k∗)!
(n+1)!

. So to establish the claim it is su�cient to show that the following inequality
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holds:

1

n+ 1
− (k∗ + 1)!(n− k∗)!

(n+ 1)!
≥ n− 2

n(n+ 1)
. (36)

Now, consider the function (k∗+1)!(n−k∗)!
(n+1)!

for k∗ ∈ {1, .., n−2} (recall that k∗ ≤ n−2). It it easy

to check that it reaches a maximum at the corners i.e., at k∗ = 1 and at k∗ = n − 2 where it

takes the value 2
n(n+1)

. Indeed, this follows immediately from the fact that Γ(x∗+2)Γ(n−x∗+1)

is a convex function ox x on [1, n− 2]. Using either k∗ = 1 or k∗ = n− 2 in (36) yields

1

n+ 1
− 2

n(n+ 1)
=

n− 2

n(n+ 1)
.

So, (36) holds, and hence the agent has no incentive to deviate to zero investment.

Claim 4: A deviation to k′ ̸= k∗ = ⌈c(n+ 2)⌉ − 2 is unpro�table for the agent.

Note that by Claim 2 we only need to consider deviations that involve investment k′ and

n−k′ signals, following the disclosure of which the principal uses her optimal decision rule and

approves the project only if the number of successes j is such that j ≥ max{⌈c(n+2)⌉−k′−1, 1}.
First, suppose that k′ ≥ ⌈c(n + 2)⌉ − 1 and so j = 1. Since c > 1

2
, it follows that k′ > n

2
.

Then, given the approval threshold j = 1, the probability that the project is approved is equal

to:

1− (k′ + 1)!(n− k′)!

(n+ 1)!
. (37)

Consider now the agent deviating and choosing investment k′′ = k′ − 1. In this case, k′′ ≥
⌈c(n+2)⌉−2, so the principal's approval threshold remains j = 1, and so the probability of the

project approval is equal to 1 − k′!(n−k′+1)!
(n+1)!

. This probability is greater than the value of (37)

because k′!(n− k′ + 1)! < (k′ + 1)!(n− k′)! The latter inequality holds because it is equivalent

to n− k′ + 1 < k′ + 1 which holds because k′ > n
2
.

Thus, it follows that the agent is strictly better o� choosing k′ = ⌈c(n + 2)⌉ − 2 than any

larger investment.

Next, let us show that the agent would not deviate to k′′ < ⌈c(n + 2)⌉ − 2. We prove this

by showing that, when k ≤ ⌈c(n + 2)⌉ − 2, the agent's payo� when she chooses k is greater

than the payo� that she gets by choosing k − 1. First, when k ≤ ⌈c(n + 2)⌉ − 2 the principal

uses threshold j(k) s.t. j(k) + k = ⌈c(n + 2)⌉ − 1. This implies that the agent's payo� when

she chooses k is greater than the payo� that she gets by choosing k − 1 i�

(n− k)!

(j(k)− 1)!
<

(n− k + 1)!

j(k)!
.

The latter inequality is equivalent to n + 1 > j(k) + k, which holds because j(k) + k =

⌈c(n+ 2)⌉ − 1 < n+ 1. The latter inequality holds because c < n+1
n+2

. Q.E.D.
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Proof of Proposition 3: Let jc denote the approval threshold that the principal's commits

to. Let us �rst characterize the agent's best response to jc ∈ {0, n}. The optimality conditions

(16) in the proof of Proposition 1 implies that for c ∈ [1
2
, n+1
n+2

]. the agent's best response to

threshold jc ∈ {1, ..., n−2} is to invest k(jc) s.t. n−jc−1
2

≤ k(jc) ≤ n−jc+1
2

, and acquire n−k(jc)
signals. This inequality implies that k(jc) = n−jc

2
if n− jc is even, and k(jc) ∈ {n−jc−1

2
, n−jc+1

2
}

if n− jc is odd. In the latter case we choose the higher investment k(jc) = n−jc+1
2

.

Note that the agent does not wish to deviate from k(jc) > 0 to k = 0 when jc ∈ {1, ..., n−2}
and Assumption 1 holds i.e., b ≤ n−2

n(n+1)
. To establish this, let us show that the agent prefers

action pair (k = 1, r = n − 1 ) to action pair (k = 0, r = n) under threshold jc ≤ n − 2,

which then implies that she prefers k(jc) to k = 0. Indeed, by (10), the probability of at least

j successes under (k = 0, r = n ) is Pr(j′ ≥ j|k = 0, r = n) = 1− j
n+1

, and the probability of

obtaining at least j successes under (k = 1, r = n−1 ) is Pr(j′ ≥ j|k = 1, r = n−1) = 1− (j+1)j
(n+1)n

.

Then,

Pr(j′ ≥ j|k = 1, r = n− 1)− Pr(j′ ≥ j|k = 0, r = n) =
j(n− j − 1)

n(n+ 1)
. (38)

When n ≥ 3, then on the domain j ∈ {1, ..., n − 2}, (38) reaches a minimum n−2
n(n+1)

both at

j = 1 and at j = n − 2. Thus, if b < n−2
n(n+1)

, the agent prefers investment k = 1 to k = 0,

and so a priori she would not deviate from k(jc) > 0 to k = 0. If jc = n − 1, then Pr(j′ ≥
n− 1|k = 1, r = n− 1) = Pr(j′ = n− 1|k = 1, r = n) = Pr(j′ ≥ n− 1|k = 0, r = n) = 2

(n+1)
,

and the agent's best response is k(jc = n − 1) = 0. If jc = n − 1, then naturally the agent's

best response is k(n) = 0.

Now, let us consider the principal's optimal choice of the threshold jc. Let π(k, j) be the

principal's expected payo� under threshold j when the agent invests k and acquires n − k

signals. We have:

π(k, j) =
n−k∑
j′=j

Pr(j′|k, n)
(k + j′ + 1

n+ 2
− c
)
=

n−k∑
j′=j

(k + 1)(j + k)!(n− k)!

j!(n+ 1)!

(k + j′ + 1

n+ 2
− c
)

(39)

Recall that Pr(j|k, n) = (k+1)(j+k)!(n−k)!
j!(n+1)!

is the probability of j successes with n− k signals and

investment k.

First, let us deal with special boundary cases, jc = n − 1, jc = n and jc = 0. Consider

jc = n− 1. Since Pr(j′ = n− 1|k = 0, r = n) = Pr(j′ = n|k = 0, r = n) = 1
(n+1)

, π(k(n− 1) =

0, jc = n− 1) =
( n
n+2

−c)+(n+1
n+2

−c)

n+1
. Also, π(k = 1, jc = n− 1) = 2

n+1
n+2

−c

n+1
and π(k(n− 2) = 1, jc =

n−2) = Pr(j = n−2|k = 1, r = n−1)
(

n
n+2

− c
)
+Pr(j = n−1|k = 1, r = n−1)

(
n+1
n+2

− c
)
=

2(n−1)
n(n+1)

(
n

n+2
− c
)
+ 2

n+1

(
n+1
n+2

− c
)
. Thus, π(k(n−2) = 1, jc = n−2) > π(k(n−1) = 0, jc = n−1),

so jc = n− 1 is not an optimal choice for the principal when c ≤ n
n+2

. In the complementary

case, when c > n
n+2

and also n ≥ 3, π(k = 1, jc = n− 1) > π(k(n− 2) = 1, jc = n− 2). In this
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case, the derivation in (46) and below shows that π(k = 1, jc = n−1) < π(k(n−3), jc = n−3),

so jc = n− 1 is not optimal.

Next, consider jc = n. We have π(k(n) = 0, jc = n) =
n+1
n+2

−c

n+1
= 1

2
π(k = 1, jc = n− 1) > 0.

Since (46) and the derivations below establish that π(k = 1, jc = n−1) < π(k(n−2), jc = n−2)

when n− 1 is even and n ≥ 3 and π(k = 1, jc = n− 1) < π(k(n− 3), jc = n− 3) when n− 1

is odd and so n ≥ 4, we conclude that jc = n is not optimal when n ≥ 3.14

Now, consider jc = 0. We have k(0) = 0, so with r = n and c ∈ [1
2
, n+1
n+2

], we have

π(0, 0) = 1
n+1

∑n
j=0

(
j+1
n+2

− c
)
= 1

2
− c <

n+1
n+2

−c

n+1
= π(k = 0, j = n). Thus, jc = 0 is not optimal.

Next, let us show that π(k(jc − 1), jc − 1) − π(k(jc), jc) > 0 for all jc ∈ {2, ..., n} when

n− jc is even. Since in this case k(jc) = n−jc

2
and k(jc − 1) = n−jc

2
+ 1, we have:

π(k(jc − 1), jc − 1)− π(k(jc), jc) =

n−n−jc

2
−1∑

j=jc−1

Pr(j|n− jc

2
+ 1, n)

( n−jc

2 + 1 + j + 1

n+ 2
− c
)

−
n−n−jc

2∑
j=jc

Pr(j|n− jc

2
, n)
( n−jc

2 + j + 1

n+ 2
− c
)

=
( n+jc

2 + 1

n+ 2
− c
) n−n−jc

2∑
j=jc

(Pr(j − 1|n− jc

2
+ 1, n)− Pr(j|n− jc

2
, n))

+
1

n+ 2

n−n−jc

2∑
j′=jc+1

n−n−jc

2∑
j=j′

(Pr(j − 1|n− jc

2
+ 1, n)− Pr(j|n− jc

2
, n)) =

( n+jc

2 + 1

n+ 2
− c
)( (n+jc

2 )!(n+jc

2 )!

(n+ 1)!(jc − 1)!
−

(n+jc

2 )!(n+jc

2 − 1)!

(n+ 1)!(jc − 2)!

)

+
1

n+ 2

n+jc

2∑
j′=jc+1

(
(n−jc

2 + j′)!(n− n−jc

2 )!

(n+ 1)!(j′ − 1)!
−

(n−jc

2 + j′)!(n− n−jc

2 − 1)!

(n+ 1)!(j′ − 2)!

)
=

( n+jc

2 + 1

n+ 2
− c
)(n+jc

2 )!(n+jc

2 − 1)!

(n+ 1)!(jc − 1)!

(
n− jc

2
+ 1

)
+

1

n+ 2

n+jc

2∑
j′=jc+1

(n−jc

2 + j′)!(n+jc

2 − 1)!

(n+ 1)!(j′ − 1)!

(
n+ jc

2
− j′ + 1

)
=

(n+jc

2 − 1)!

(n+ 2)!

(n+ jc

2
+ 1− c(n+ 2)

) (n+jc

2 )!

(jc − 1)!

(
n− jc

2
+ 1

)
+

n+jc

2∑
j′=jc+1

(n−jc

2 + j′)!

(j′ − 1)!

(
n+ jc

2
− j′ + 1

)
(40)

where the �rst equality holds by (39), the third equality holds by (11) in Lemma (5), and the

second, forth and �fth equalities hold by rearrangement.

14When n = 2, (38) implies that the agent's best response to jc = 1 is k = 0. The agent's best response to

jc = 2 is k = 0 also. But since π(k = 0, jc = 1;n = 2) =
( 1
2−c)+( 3

4−c)

3 <
3
4−c

3 = π(k = 0, jc = 2;n = 2), it is
optimal for the principal to set jc = 2, with k(2) = 0.
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To show that (40) is positive, let us consider the terms in brackets in the last line of (40).

Consider the �rst term. Since c ≤ n+1
n+2

, we have:

(n+ jc

2
+ 1− c(n+ 2)

) (n+jc

2
)!

(jc − 1)!

(
n− jc

2
+ 1

)
≥ n− jc

2

(n+jc

2
)!
(
n−jc

2
+ 1
)

(jc − 1)!
(41)

Next, let us simplify the second term in brackets on the last line of (40). We have:

n+jc

2∑
j′=jc+1

(n−jc

2 + j′)!

(j′ − 1)!

(
n+ jc

2
− j′ + 1

)
=

n+ jc

2

n+jc

2∑
j=jc+1

(n−jc

2 + j′)!

(j′ − 1)!
−

n+jc

2∑
j′=jc+1

(n−jc

2 + j′)!

(j′ − 2)!
=

n+ jc

2

n+jc

2
−1∑

j=jc

(n−jc

2 + 1 + j)!

j!
−

n+jc

2
−2∑

j=jc−1

(n−jc

2 + 2 + j)!

j!
=

n+ jc

2


n+jc

2
−1∑

j=0

(n−jc

2 + 1 + j)!

j!
−

jc−1∑
j=0

(n−jc

2 + 1 + j)!

j!


−

n+jc

2
−2∑

j=0

(n−jc

2 + 2 + j)!

j!
+

j=jc−2∑
j=0

(n−jc

2 + 2 + j)!

j!

=

(
n+ jc

2

(n+ 1)!

(n−jc

2 + 2)(n+jc

2 − 1)!
− (n+ 1)!

(n−jc

2 + 3)(n+jc

2 − 2)!

)

−

(
n+ jc

2

(n+jc

2 + 1)!

(n−jc

2 + 2)(jc − 1)!
−

(n+jc

2 + 1)!

(n−jc

2 + 3)(jc − 2)!

)
=

=
(n+ 2)!

(n−jc

2 + 2)(n−jc

2 + 3)(n+jc

2 − 1)!
−

(n+jc

2 + 1)!
(
(n−jc

2 + 1)(n−jc

2 + 2) + n+jc

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
(42)

Using (41) and (42) in (40), yields:

π(k(jc − 1), jc − 1)− π(k(jc), jc) =
(n+jc

2 − 1)!

(n+ 2)!

(
(n+ 2)!

(n−jc

2 + 2)(n−jc

2 + 3)(n+jc

2 − 1)!
−

(n+jc

2 + 1)!
(
(n−jc

2 + 1)(n−jc

2 + 2) + n+jc

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
−

(n+jc

2 )!
(
n−jc

2 + 1
)

(jc − 1)!

n− jc

2

 (43)

The last two terms (43) can be simpli�ed to yield:

(n+jc

2 + 1)!
(
(n−jc

2 + 1)(n−jc

2 + 2) + n+jc

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
+

(n+jc

2 )!
(
n−jc

2 + 1
)

(jc − 1)!

n− jc

2
=

=
(n+jc

2 + 1)!
(
(n−jc

2 + 1)(n−jc

2 + 2) + n+jc

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
+

(n+jc

2 )!
(
n−jc

2 + 1
)
(n−jc

2 + 2)(n−jc

2 + 3)n−jc

2

(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!

=

(n+jc

2 )!

(
2n− jc + 1 +

(
n−jc

2

)2
+ n+jc

2

(
n+jc

2 + 1
))

(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
=

(n+jc

2 )!
(
5n−jc

2 + 1 + n2+(jc)2

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
(44)
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Substituting (44) into (43) we �nally obtain:

π(k(jc − 1), jc − 1)− π(k(jc), jc) =

(n+jc

2 − 1)!

(n+ 2)!

 (n+ 2)!

(n−jc

2 + 2)(n−jc

2 + 3)(n+jc

2 − 1)!
−

(n+jc

2 )!
(
5n−jc

2 + 1 + n2+(jc)2

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!

 =

(n+jc

2 − 1)!

(n+ 2)!(n−jc

2 + 2)(n−jc

2 + 3)(n+jc

2 − 1)!

(n+ 2)!−
(n+jc

2 − 1)!(n+jc

2 )!
(
5n−jc

2 + 1 + n2+(jc)2

2

)
(jc − 1)!

 > 0

(45)

To ascertain the inequality on the last line of (45), note that the expression in brackets on its

last line is positive when jc = n (which is established by inspection) and decreases in jc.

Next, suppose that n − jc is odd. Then k(jc) = n−jc+1
2

and k(jc − 1) = n−jc+1
2

(note that

as explained above, here we can take by convention k(n− 1) = 1). So we have:

π(k(jc − 1), jc − 1)− π(k(jc), jc) =

n−n−jc+1
2∑

j=jc−1

Pr(j|n− jc + 1

2
, n)
( n−jc+1

2
+ j + 1

n+ 2
− c
)

−
n−n−jc+1

2∑
j=jc

Pr(j|n− jc + 1

2
, n)
( n−jc+1

2
+ j + 1

n+ 2
− c
)
= Pr(jc − 1|n− jc + 1

2
, n)
( n+jc+1

2

n+ 2
− c
)

=
(n−jc+1

2
+ 1)(n+jc−1

2
)!(n+jc−1

2
)!

(jc − 1)!(n+ 1)!

( n+jc+1
2

n+ 2
− c
)
. (46)

where the �rst equality holds by (39), the second equality holds by rearrangement, and the

third equality holds by (11) in Lemma 5.

Combining (45) and (46) we obtain that for even n− jc we have:

π(k(jc − 1), jc − 1)− π(k(jc + 1), jc + 1) =

(n+jc

2 − 1)!

(n+ 2)!

 (n+ 2)!

(n−jc

2 + 2)(n−jc

2 + 3)(n+jc

2 − 1)!
−

(n+jc

2 )!
(
5n−jc

2 + 1 + n2+(jc)2

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!


+

(n−jc

2 + 1)(n+jc

2 )!(n+jc

2 )!

(jc)!(n+ 1)!

( n+jc+2
2

n+ 2
− c
)
. (47)

Factoring out
(n+jc

2
−1)!

(n+2)! from (47) yields: (π(k(jc−1),jc−1)−π(k(jc+1),jc+1))(n+2)!

(n+jc

2
−1)!

=

(n+ 2)!

(n−jc

2 + 2)(n−jc

2 + 3)(n+jc

2 − 1)!
−

(n+jc

2 )!
(
5n−jc

2 + 1 + n2+(jc)2

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
−

(n−jc

2 + 1)(n+jc

2 )!

(jc)!

(n− jc)

2
=

(n+ 2)!

(n−jc

2 + 2)(n−jc

2 + 3)(n+jc

2 − 1)!
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−
(n+jc

2 )!
(
5n−jc

2 + 1 + n2+(jc)2

2

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
−

(n−jc

2 + 1)(n+jc

2 )!(n−jc

2 + 2)(n−jc

2 + 3)

(n−jc

2 + 2)(n−jc

2 + 3)(jc)!

(n− jc)

2

=
(n+ 2)!

(n−jc

2 + 2)(n−jc

2 + 3)(n+jc

2 − 1)!

−
(n+jc

2 )!
(
5n−jc

2 + 1 + n2+(jc)2

2 + (n−jc

2 + 1)(n−jc

2 + 2)(n−jc

2 + 3) (n−jc)
2j

)
(n−jc

2 + 2)(n−jc

2 + 3)(jc − 1)!
> 0 (48)

Simple inspection establishes that this expression has a positive sign when n ≥ 5 and any

jc ∈ {2, n− 1} and n = 4 and jc = 2 (recall that we also require n− j to be even here).

So, in combination, (45) and ( 48) imply that , when n ≥ 3 and n is even, π(k(1), 1) >

π(k(jc), jc) for all jc ≥ 2, so jc = 1 is the unique optimal choice for the principal.

When n is odd and n ≥ 5, then (45) and ( 48) imply that π(k(2), jc = 2) > π(k(jc), jc)

for all jc > 2. At the same time, (46) implies that π(k(2), 2) > π(k(1), 1) since c ≥ n+3
2(n+2

. So,

jc = 2 is the unique optimal choice for the principal.

When n = 3, π(k(2), 2) > π(k(1), 1), so jc = 2 is optimal. We have also established above

that jc = 2 is optimal when n = 2. Q.E.D.

Proof of Proposition 4: Recall from Proposition 3 that the level of investment under

principal's commitment is kp ∈ {n
2
, n−1

2
}, depending on whether n is even or odd. On the other

hand, the level of investment under the agent's commitment is ka := ⌈c(n+ 2)⌉ − 2. Next, let

us compute the players' expected payo�s.

1. First, consider the case under the principal's commitment, with even n. In this case,

jc = 1 and k(jc) = n
2
. Then, we have:

Pr(j|k(jc), n) =
Γ
(
n
2
+ 2
)
Γ
(
j + n

2
+ 1
)

Γ(j + 1)Γ(n+ 2)

and E(θ|k(jc), n) = 1
2
+ j

n+2
. Therefore the principal's expected payo� is

n−k(jc)∑
j=1

(Γ (n
2
+ 2
)
Γ
(
j + n

2
+ 1
)

Γ(j + 1)Γ(n+ 2)
− c
)
=

(2c− 1)Γ
(
n
2
+ 2
)2

Γ(n+ 3)
− c+

n+ 2

n+ 4
. (49)

2. Second, consider the principal's commitment case with odd n. In this case, optimal

commitment threshold is jc = 2. Therefore, if the principal commits to jc = 1, her payo�

would be lower than with jc = 2 and would be equal to (49).

3. Third, consider the principal's expected payo� under the agent's commitment. Here, in

equilibrium we have jc = 1 and ka(j
c = 1) = ⌈c(n + 2)⌉ − 2. With k̂ = c(n + 2)− 2, we
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have E(θ|k̂, n) = c+ j−1
n+2

and

Pr(j|k̂, n) = (c(n+ 2)− 1)Γ(n− c(n+ 2) + 3)Γ(j + c(n+ 2)− 1)

Γ(j + 1)Γ(n+ 2)
.

Therefore, the principal's expected payo� under the agent's commitment is

n−k̂∑
j=1

(c(n+ 2)− 1)Γ(n− c(n+ 2) + 3)Γ(j + c(n+ 2)− 1)

Γ(j + 1)Γ(n+ 2)

j − 1

n+ 2

= − 1

c(n+ 2)
+

Γ(c(n+ 2))Γ(n− c(n+ 2) + 3)

Γ(n+ 3)
− c+ 1. (50)

Now, let us show that the di�erence (50)-(49) is positive. This di�erence is equal to:

− 1

c(n+ 2)
−

(2c− 1)Γ
(
n
2
+ 2
)2

Γ(n+ 3)
+

Γ(c(n+ 2))Γ(n− c(n+ 2) + 3)

Γ(n+ 3)
− n+ 2

n+ 4
+ 1. (51)

Consider the following derivatives:

∂ − 1
c(n+2)

− (2c−1)Γ(n
2
+2)

2

Γ(n+3)
− n+2

n+4
+ 1

∂c
=

1

c2(n+ 2)
−

2Γ
(
n
2
+ 2
)2

Γ(n+ 3)
(52)

that itself decreases in c, and the derivative

∂ Γ(c(n+2))Γ(n−c(n+2)+3)
Γ(n+3)

∂c

=
(n+ 2)Γ(c(n+ 2))Γ(n− c(n+ 2) + 3)(ψ(c(n+ 2))− ψ(n− c(n+ 2) + 3))

Γ(n+ 3)
> 0 (53)

since ψ(c(n+ 2)) > ψ(n− c(n+ 2) + 3). We want to show that (52) > (53). To see this, note

that the derivative of (53) with respect to c is positive and equal to:

(n+ 2)2Γ(c(n+ 2))Γ(n− c(n+ 2) + 3)×(
(ψ(0)(c(n+ 2))− ψ(0)(n− c(n+ 2) + 3))2 + ψ(1)(c(n+ 2)) + ψ(1)(n− c(n+ 2) + 3)

)
Γ(n+ 3)

> 0.

Then, using c′ := n−1
n+2

, the di�erence (52)− (53) may be computed as

n+ 2

(n− 1)2
−

2Γ
(
n
2
+ 2
)2

Γ(n+ 3)
−

6(n+ 2)Γ(n− 1)
(
ψ(0)(n− 1) + γ − 11

6

)
Γ(n+ 3)

(54)
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Note that (54) is positive if and only if:

−2(n−1)2Γ
(n
2
+ 2
)2

+(n+2)Γ(n+3)−6(n+2)(n−1)2Γ(n−1)

(
ψ(0)(n− 1) + γEM − 11

6

)
> 0.

where γEM is the Euler-Masceroni constant.

In the next step, consider ĉ = n+4
2(n+2)

. Then

− 1

ĉ(n+ 2)
−

(2ĉ− 1)Γ
(
n
2
+ 2
)2

Γ(n+ 3)
− n+ 2

n+ 4
+ 1 =

Γ(ĉ(n+ 2))Γ(n− ĉ(n+ 2) + 3)

Γ(n+ 3)

and therefore we conclude that (51)≥ 0 is positive. Thus, the principal's expected payo� under

the agent's commitment is weakly higher than the principal's payo� under the principal's

commitment.

The principal's expected payo� under her commitment is higher than her payo� in the

equilibrium of the disclosure game under the baseline scenario, because the principal can always

replicate the outcome of the disclosure game under commitment.

Next, consider the agent's expected payo�s under di�erent regimes. We �rst show that the

agent prefers his commitment to full disclosure to his equilibrium payo� in the disclosure game.

We maintain the assumption that the agent wants to invest at least one unit, and therefore

we need to compare the probabilities of the project approval in the two environments. First,

under the commitment to full signal disclosure the probability of the project approval that is,

provided that j∗ = 1 and k∗ = ⌈c(n+ 2)⌉ − 2:

1− Γ(n− ⌈c(n+ 2)⌉+ 3)Γ(⌈c(n+ 2)⌉)
Γ(n+ 2)

.

In the equilibrium of the disclosure game, provided that c ∈
[

n+4
2(n+2)

, n
n+2

]
, the probability of

the project approval is:

1− Γ(⌈c(n+ 2)⌉ − 1)Γ(⌈c(n+ 2)⌉)
Γ(n+ 2)Γ(−n+ 2⌈c(n+ 2)⌉ − 3)

.

Then, the agent prefers the commitment to full signal disclosure if

Γ(⌈c(n+ 2)⌉ − 1)

Γ(n− ⌈c(n+ 2)⌉+ 3)Γ(−n+ 2⌈c(n+ 2)⌉ − 3)
≥ 1. (55)

Due to the properties of the ceiling-function, we have:

Γ(⌈c(n+ 2)⌉ − 1)

Γ(n− ⌈c(n+ 2)⌉+ 3)Γ(−n+ 2⌈c(n+ 2)⌉ − 3)
≥ Γ(c(n+ 2)− 1)

Γ(n− c(n+ 2) + 3)Γ(−n+ 2c(n+ 2)− 2)
.

(56)
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Now, compute the derivative:

∂ Γ(c(n+2)−1)
Γ(n−c(n+2)+3)Γ(−n+2c(n+2)−2)

∂c
=

(n+ 2)Γ(c(n+ 2)− 1)(−2ψ((2c− 1)(n+ 2)) + ψ(n− c(n+ 2) + 3) + ψ(c(n+ 2)− 1))

Γ((2c− 1)(n+ 2))Γ(n− c(n+ 2) + 3)
,

The last expression is positive for small c, and negative otherwise. Thus, the RHS of (56) is,

�rst, increasing and then decreasing on the given cost interval.

First, consider the realization of the RHS of (56) at c = n+4
2(n+2)

, that is 1. Second, consider

the realization of the RHS of (56) at c = n−1
n+2

, that is 1
6
(n − 4)(n − 3) ≥ 1 for n ≥ 6. Given

that the RHS of (56) increases in c at c = n+4
2(n+2)

, it must be the case that the inequality

(55) is satis�ed on c ∈
[

n+4
2(n+2)

, n−1
n+2

]
, and therefore the agent prefers commitment to full signal

disclosure to the equilibrium of the disclosure game.

Next, we show that the agent prefers principal's commitment to the outcome of the dis-

closure game. To obtain this result, consider, �rst, the agent's expected payo�s under the

principal's commitment:

1. Consider n even; jc = 1 and k∗ = n
2
. In this case the agent's expected payo� is (i.e. by

omitting the �xed cost of investment it is just the probability of persuading the principal)

1−
Γ
(
n+3
2

)
Γ
(
n+4
2

)
Γ(n+ 2)

,

2. Consider n odd; jc = 2 and k∗ = n−1
2
. In this case the agent's expected payo� is

1−
Γ
(
n+3
2

)
Γ
(
n+5
2

)
Γ(n+ 2)

.

As we know from the previous part of the proof, in the disclosure game the agent's expected

payo� is:

1− Γ(⌈c(n+ 2)⌉ − 1)Γ(⌈c(n+ 2)⌉)
Γ(n+ 2)Γ(2⌈c(n+ 2)⌉ − (n+ 3))

(57)

that is (weakly) decreasing in c. At the lower bound of the cost interval, c = n+4
2(n+2)

, the

expected payo� (57) becomes

1−
Γ
(⌈

n
2

⌉
+ 1
)
Γ
(⌈

n
2

⌉
+ 2
)

Γ(n+ 2)Γ
(
−n+ 2

⌈
n
2

⌉
+ 1
) . (58)
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Consider n even. Then, since ⌈n
2
⌉ = n

2
, (58) can be expressed as

1−
Γ
(
n+3
2

)
Γ
(
n+4
2

)
Γ(n+ 2)Γ

(
−n+ 2n

2
+ 1
) = 1−

Γ
(
n+3
2

)
Γ
(
n+4
2

)
Γ(n+ 2)

which is exactly the same as the payo� under the principal's commitment with n even. Since

the agent's payo� in the game decreases in c, the agent prefers principal's commitment to the

outcome of the game.

Consider n odd. Then, since ⌈n
2
⌉ = n+1

2
, (58) can be expressed as

1−
Γ
(
n+3
2

)
Γ
(
n+5
2

)
Γ(n+ 2)Γ

(
−n+ 2n+1

2
+ 1
) = 1−

Γ
(
n+3
2

)
Γ
(
n+5
2

)
Γ(n+ 2)

where the latter equality is satis�ed since Γ(2) = 1. The above payo� is the same as the

payo� under the principal's commitment with n odd. So, since the agent's payo� in the game

decreases in c, the agent prefers principal's commitment to the outcome of the game. Q.E.D.

Proof of Corollary 1: Suppose that the agent is committed to full signal disclosure and the

principal is committed to some approval threshold jc. Then the agent's disclosure has no e�ect

on approval of the project. Therefore, the agent's best response budget allocation would be

the same as the one characterized in Proposition 3. So the equilibrium outcome would be the

same as the one that emerges when only the principal can commit and which is characterized

in Proposition 3. But by Proposition 4, the principal prefers the equilibrium outcome under

the agent's commitment to the outcome under her own commitment. So, the principal would

be better o� not to use any commitment when the agent is committed to disclosure.

Q.E.D.

Proof of Proposition 5: Let (l, j(.)) denote the principal's strategy, where l ∈ {0, ..., n}
and j(.) : {0, ..., n} 7→ {0, ..., n + 1} and (r(.), k(.)) : {0, ..., n} 7→ {0, ..., n}2 s.t. r(l) ≤ l and

k(l) + r(l) ≤ n for all l, denote the agent's strategy, where l is the ceiling on the number of

signals set by the principal, j(l′) is the principal's approval threshold when she uses the ceiling

l′, k(l) is the agent's investment and r(l) is the number of signals acquired by the agent when

the principal sets the signal ceiling l. By convention, we set j(l′) = n+1 if the principal never

approves the project after setting threshold l′.

The principal's equilibrium strategy (le, je(.)) and the agent's equilibrium strategy (re(.), ke(.))

must be sequentially rational. That is, for each l ∈ {0, ..., n}, we must have re(l) ≤ l and the

strategies (re(l), ke(l)) and je(l) must constitute an equilibrium of the continuation game, and

le must maximize the principal's expected payo� over l ∈ {0, ..., n} given these continuation

equilibrium strategies (re(.), ke(.)) and je(.).

Note that the argument of Lemma 1 implies that the principal's approval strategy j(.) is
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sequentially rational i�:

j(l) = max{0, ⌈c(r(l) + k(l) + 2)⌉ − k(l)− 1}. (59)

On the other hand, the sequential rationality of the agent's strategy (r(.), k(.)) implies the

following. If l > 0 and j(l) is such that 0 < j(l) ≤ l, then r(l) = min{l, n− k(l)} i.e., the agent

will either acquire the maximum possible number of signals l or, if n − k(l) < l, allocate all

the budget remaining after investment to signals, for otherwise the agent could get a strictly

higher payo� by acquiring more signals. Also, if 0 < j(l) ≤ l, a sequentially rational k(l) is

such that either k(l) = 0 or k(l) ≥ n − l. Indeed, if 0 < k(l) < n − l, then the agent could

increase her payo� by increasing her investment level to n − l since she cannot acquire more

than l signals. Note that if k(l) > 0, then, combining k(l) ≥ n− l and r(l) = min{l, n− k(l)}
implies that r(l) + k(l) = n.

Now, we can proceed to characterize the continuation equilibria for every l ∈ {1, .., n}.
There are three cases to consider: (1) l ∈ {⌈c(n + 2)⌉ − 2, ..., n}; (2) l ∈ {n + 2 − ⌈c(n +

2), ..., ⌈c(n+ 2)− 3⌉}; (3) l ∈ {0, ..., n+ 1− ⌈c(n+ 2)}.
(1) l ∈ {⌈c(n+2)⌉− 2, ..., n}. In this case, the equilibrium characterized in Proposition 1 is

feasible and gives rise to an equivalent equilibrium in our continuation game, which we adopt

here. In this equilibrium k(l) = (n + 2) − ⌈c(n + 2)⌉, r(l) = n − k(l) = ⌈c(n + 2) − 2 and

j(l) = 2⌈c(n+ 2)⌉ − (n+ 3). Note that the equilibrium strategies and outcomes are the same

for all l in this range.

(2) l ∈ {n + 2 − ⌈c(n + 2), ..., ⌈c(n + 2)⌉ − 3}. Let us show that strategies k(l) = n − l,

r(l) = l, j(l) = ⌈c(n+ 2) + l − n− 1 constitute a continuation equilibrium in this case.

Note that by (59) j(l) = ⌈c(n+ 2) + l − n− 1 is a best response to (k(l) = n− l, r(l) = l)

Let us show that (k(l) = n− l, r(l) = l) is a best response to j(l) = ⌈c(n + 2) + l − n− 1 for

given l. First note that a deviation to r′ > l is infeasible. Also, the agent does not wish to

deviate to (k′, r′) s.t. 0 < k < k(l), r′ ≤ l because such deviation involves a lower and positive

investment and a lower number of signals. These changes both reduce the probability of the

project approval given that we have j(l) > 0.

Now let us rule out a deviation to k′ s.t. k′ > k(l). Since j(l) > 0, we should focus on

deviations such that k′ ≤ n− 1 and r′ = n− k′ ≥ 1. Then by (37), the probability of project

approval is equal to 1− (k′+j(l))!(n−k′)!
(j(l)−1)!(n+1)!

. As shown in the proof of Lemma 5, this expression is a

concave function of k′, is symmetric in k′ around km = n−j(l)
2

, reaches a unique maximum at

km = n−j(l)
2

, and is decreasing in k′ when k′ ≥ n−j(l)
2

. But note that n−j(l)
2

= n− ⌈c(n+2)⌉+1+l
2

<

n − l = k(l) (where the inequality holds because ⌈c(n + 2) + 1 > ⌈c(n + 2)⌉ − 3 ≥ l), which

implies that a deviation to k′, k′ > n− l, is unpro�table for the agent.

Now let us rule out a deviation to k′ = 0 while keeping r′ = l. By (10), the probability of

obtaining at least j ≤ r′ successes under k = 0 is Pr(j′ ≥ j|k = 0, r′) = 1 − j
r′+1

, while the

probability of obtaining at least j successes with k = 1 and r′ = l, is Pr(j′ ≥ j|k = 1, r′) =
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1− (j+1)j
(r′+2)(r′+1)

. Then,

Pr(j′ ≥ j|k = 1, r′)− Pr(j′ ≥ j|k = 0, r′) =
(r′ − j + 1)j

(r′ + 2)(r′ + 1)
. (60)

When j ∈ {1, ..., r′}, (60) is nonnegative and reaches its minimum r′

(r′+2)(r′+1)
at the corners at

j = 1 or at j = r′. Note that r′ = l ≤ n− 2. The last inequality holds since c ≤ n+1
n+2

. Further,

for all r′ ∈ {1, ..., n − 2}, r′

(r′+2)(r′+1)
≥ n−2

n(n′−1)
≥ n− 2n(n+ 1). Hence, since b < n−2

n(n+1)
and

n ≥ 3, the agent prefers investment k = 1 to no investment, and so a priori she would not

deviate from k(l) ≥ 1 to k = 0. This completes the proof for case (2).

(3) l ∈ {0, ..., n + 1 − ⌈c(n + 2)}. Let us show that in this case there is a continuation

equilibrium k(l) = 0, r(l) = l, j(l) > l, so that the agent makes zero investment and the

project is never approved. Indeed, the agent's strategy (k(l) = 0, r(l) = l) is a best response

to the principal never approving the project i.e., j(l) > l. To con�rm that j(l) > l is a best

response to (k(l) = 0, r(l) = l) we will ascertain that the principal gets a negative payo� when

k(l) = 0, r(l) = l and the number of successes is j = l. Indeed, in this case the principal's

payo� is equal to: l+1
l+2

− c. This expression is negative i� l < 1
1−c

− 2. This inequality holds

because l < n+ 2− ⌈c(n+ 2)⌉ and n+ 2− ⌈c(n+ 2)⌉ < 1
1−c

− 2. The latter inequality follows

since by assumption c > n+3−
√
n+3

n+2
. This completed the characterization of the continuation

equilibrium in case (3).

To complete the proof, it remains to show that in equilibrium the principal will choose the

information acquisition limit le = n + 2 − ⌈c(n + 2)⌉. So let us compare the expected payo�s

that the principal gets in the continuation equilibria characterized above for each l ∈ {0, ..., n}
and show that this payo� is maximal at le. First, note that for every l ∈ {0, ..., n+1−⌈c(n+2)}
(case 3), the principal's expected payo� is zero.

Further, let π(k, j) be the principal's expected payo� when the agent invests k, acquires

n− k signals and the principal uses threshold j to approve the project. We have:

π(k, j) =
n−k∑
j′=j

Pr(j′|k, n)
(k + j′ + 1

n+ 2
− c
)
=

n−k∑
j′=j

(k + 1)(j + k)!(n− k)!

j!(n+ 1)!

(k + j′ + 1

n+ 2
− c
)

(61)

Note that Pr(j|k, n) = (k+1)(j+k)!(n−k)!
j!(n+1)!

is the probability of j successes in n − k signals given

investment k.

Consider case (1) now. Then for each l ∈ {⌈c(n + 2)⌉ − 2, ..., n}, the principal's expected
payo� is the same and is given by π(k∗, j(k∗)) where k∗ = k(⌈c(n+2)⌉−2) = (n+2)−⌈c(n+2)⌉,
j(k∗) = ⌈c(n+ 2)⌉ − k∗ − 1 = 2⌈c(n+ 2)⌉ − (n+ 3).

Next, in case (2) i.e., for l ∈ {n+2−⌈c(n+2), ..., ⌈c(n+2)− 3⌉}, the principal's expected
payo� given l is given by π(k(l), j(k(l))) where k(l) = n− l and j(k(l)) = j(l) = ⌈c(n+ 2)⌉ −
k(l)− 1 = ⌈c(n+ 2)⌉+ l − n− 1.
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Note that our purported equilibrium signal acquisition limit le = n+ 2− ⌈c(n+ 2)⌉ is the
lowest value in the range in case (2), so k(le)) = ⌈c(n + 2)⌉ − 2 > k(l) for all other l in case

2. Also, k(le)) > k∗ where k∗ = n − l′ is the equilibrium investment level in case (1) and

l′ = ⌈c(n+ 2)⌉ − 2.

Thus, to con�rm that le = n + 2 − ⌈c(n + 2)⌉ is the equilibrium acquisition limit it is

su�cient to show that the principal's expected payo� π(k, j(k)) increases in k on {(n + 2) −
⌈c(n+ 2) ..., ⌈c(n+ 2)⌉ − 2}, where j(k) = ⌈c(n+ 2)⌉ − k − 1.

To this end, we will show that π(k + 1, j(k + 1))− π(k, j(k)) > 0 for all k ∈ {1, ..., ⌈c(n +

2)⌉ − 3}. Indeed, we have:

π(k + 1, j(k + 1))− π(k, j(k)) =
n−k−1∑

j=j(k)−1

Pr(j|k + 1, n)
(k + j + 1

n+ 2
− c
)

−
n−k∑

j=j(k)

Pr(j|k, n)
(k + j + 1

n+ 2
− c
)
=
(k + j(k) + 1

n+ 2
− c
) n−k∑

j=j(k)

(Pr(j − 1|k + 1, n)− Pr(j|k, n))

+
1

n+ 2

n∑
j′=j(k)+1

n−k∑
j=j′

(Pr(j − 1|k + 1, n)− Pr(j|k, n)) =

(k + j(k) + 1

n+ 2
− c
)((k + j(k))!(n− k)!

(n+ 1)!(j(k)− 1)!
− (k + j(k))!(n− k − 1)!

(n+ 1)!(j(k)− 2)!

)
+

1

n+ 2

n−k∑
j′=j(k)+1

(
(k + j′)!(n− k)!

(n+ 1)!(j′ − 1)!
− (k + j′)!(n− k − 1)!

(n+ 1)!(j′ − 2)!

)
=

(k + j(k) + 1

n+ 2
− c
)(k + j(k))!(n− k − 1)!

(n+ 1)!(j(k)− 1)!
(n− k − j(k) + 1)

+
1

n+ 2

n−k∑
j′=j(k)+1

(k + j′)!(n− k − 1)!

(n+ 1)!(j′ − 1)!
(n− k − j′ + 1) > 0 (62)

where the �rst equality holds by (61), the second equality holds by rearrangement, the third

equality holds by (11) in Lemma (5), the forth equality holds by rearrangement, and the

inequality holds because all terms in the summations are positive. Q.E.D.
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Online Appendix

Investment and Information Acquisition

Dimitri Migrow and Sergei Severinov

Generalizing the Payo� Structure

In this section we con�rm the robustness of our results by considering more general prefer-

ences. Suppose that the agent cares both about the principal's decision to adopt the project,

and the net pro�t from the project, θ−c. Speci�cally, if the project is adopted by the principal

the agent's payo� is

(1− α) + α(θ − c),

where α ∈ [0, 1] measures the weight that the agent assigns to the net pro�t from the project.

Thus, α parameterizes the degree of preference alignment between the players. We obtain the

following result.

Proposition 6. For each c ∈
[

n+4
2(n+2)

, n
n+2

]
there exists a non-empty interval (0, α′(c)], such

that:

(i) For all α ∈ (0, α′(c)] the equilibrium allocation is strictly interior and the investment

decreases in the project cost;

(ii) The upper bound α′(c) increases in the project cost, so that for a higher cost, there is a

larger range of preferences where the result (i) holds;

(iii) The equilibrium investment weakly increases in α, as long as α′(c) ≤ 3
4
.

Theorem 6 provides a robustness check of the results in Theorem 1. Particularly, when the

alignment between the agent's and the principal's preferences is limited, in the sense that α is

su�ciently small, the equilibrium has the same qualitative features as in the baseline model:

the agent splits the resources between productive investment and information acquisition, and

an increase in project cost leads to a lower productive investment and more information acqui-

sition.

An increase in preference alignment embodied in higher α raises the agent's willingness to

make productive investment. This is natural since the principal prefers that all resources are

invested. So, a higher α is associated with smaller ine�ciency in resource allocation.

Finally, the range of α on which the comparative statics of Theorem 1 holds increases in

the project cost. So, when the project cost is su�ciently high, the investment decreases in the

project cost even for large α's i.e., more aligned players' preferences.

Proof of the Proposition 6: Recall that in equilibrium the principal approves the project if

j ≥ j∗ = ⌈c(n+ 2)⌉ − (k + 1), where k is the principal's belief about the agent strategy.
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Suppose that the agent deviates to investment k−d, d ∈ {−(n−k), .., k}, while the principal
believes that investment level is k. Then, the agent's payo� is

Pr(j ≥ j∗|k, d)
(
α(E[θ|k, d]− c) + (1− α)

)
,

which can be rewritten as:

D(k, d, c, α) ≡
n−(k−d)∑
j=j∗(k)

(1 + (k − d))(j + (k − d))!(n− (k − d))!

j!(n+ 1)!

(
α

(
(k − d) + j + 1

n+ 2

)
+ (1− α)

)
=

2− α + k − d+ αc(2 + k − d)

2 + k − d
−

1

2 + k − d

((n− k + d)!(⌈c(n+ 2)⌉ − d− 1)!(α(k − d+ 1)⌈c(n+ 2)⌉
(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!

+

α(c(n+ 2)(d− k − 2)− (k − d)(n+ d) + d− 2(k + n+ 2)) + (n+ 2)(k − d+ 2))

(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!

)
.

The equilibrium requires that at the investment level k∗, there is no deviation incentive for

the agent to any feasible k − d, d ̸= 0. In other words, the equilibrium condition requires that

the function D(k, d, c, α) is maximized at d = 0. Formally, the following has to be satis�ed in

an equilibrium:

∂D(k, d, c, α)

∂d

∣∣∣
d=0

= 0 ⇐⇒ D3(k, c, α) ≡ −α +
(n− k)!(⌈c(n+ 2)⌉ − 1)!

(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!
×

[(
−α⌈c(n+2)⌉(k+1)(k+2)+(2+k)(α(1+c)−1)(2+k)(2+n)

)
(ψ(n−k+1)−ψ(⌈c(n+2)⌉))+

α⌈c(n+ 2)⌉+ (2 + k)(α(k + 1))
]
= 0.

As we know from the proof of the baseline model,D(k∗, c, α = 0) > 0, with k∗ = n+2−⌈c(n+2)⌉
(see the proof of Proposition 1).15 Since for α = 0, D3(k

∗ − 1, c, α = 0) = 0 which follows

directly from the fact that ψ(n− k + 1)− ψ(⌈c(n+ 2)⌉) = 0 when assuming k = k∗ − 1, it has

to be the case that D3(k < k∗ − 1, c, α = 0) < 0 and D3(k > k∗, c, α = 0) > 0.

Let us consider k in the domain [1, n − 1]. Note that as long as there exists α > 0 and

k ∈ [1, .., n− 1] that solve D3(k, c, α) = 0, we have ∂D3(k,c,α)
∂α

< 0. This is because

∂D(k, c, α)

∂α

∣∣∣
d=0

= −
Γ(−k+n+1)((k+1)⌈c(n+2)⌉+(−c−1)(k′+2)(n+2))Γ(⌈c(n+2)⌉)

Γ(n+3)Γ(−k+⌈c(n+2)⌉−1)
+ c(k + 2) + 1

k + 2
< 0

for any feasible k.

This means that as α increases, D3(k, c, α) decreases, and therefore a larger investment k

15Recall that due to the discrete support of D3(k, c, α = 0) in the baseline model, for high enough costs the
equilibrium investment is such that D3(k

∗, c, α = 0) ≥ 0.
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is required to satisfy the agent's incentive constraint.

To see that there exists a non-empty interval (0, α(c)] that solves D3(k, c, α) for any α ∈
(0, α(c)], note that for α = 0, ∂D3(k,c,α=0)

∂k
> 0 at k = k∗ − 1, and for all k in a neighborhood

[k∗ − 1− δ(c), k∗ − 1 + δ(c)], with δ(c) > 0. Since increase in α decreases D3(·) provided that

there exists k, α solving D3(k
′, c, α) = 0, it must be that there exists a non-empty interval

(0, α(c)] where each α in this interval solves D3(k
′, c, α) = 0.

Next, we show that D3(k, c, α) increases in c for all α. This means that a lower investment

solves the equality. We know thatD3(k, c, 0) increases in c. To see that the derivative is positive,

consider again D3(k, c, α), and note the following. First, ψ(n−k+1)−ψ(⌈c(n+2)⌉) decreases
in c. The term in front of this di�erence is negative for α ≤ 3(n+2)

6(n+1)−2n
, where 3(n+2)

6(n+1)−2n
≥ 3

4
.

Further, the expression

(n− k)!(⌈c(n+ 2)⌉ − 1)!

(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!
α⌈c(n+ 2)⌉ = a(n− k)!(⌈c(n+ 2)⌉)!

(n+ 2)!(⌈c(n+ 2)⌉ − (k + 2))!

increases in c for α > 0. Therefore, D3(k, c, α) decreases in c. But then, as long as there exists

α that satis�es D3(k, c, α) = 0, the trade-o� from the baseline model holds.

Finally, since D3(k, c, α) increases in c, the interval of α supporting D3(k, c, α) = 0 in-

creases with higher costs. Consider α′
max(c). If the project cost increases (and so, the function

D3(k, c, α) increases), then there exists an additional interval for α where the model's results

hold. Q.E.D.
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