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Abstract

We study a multi-unit auction environment similar to eBay. Sellers, each with a single unit of a
homogeneous good, set reserve prices at their own second-price auctions. Each buyer has private value
for the good and wishes to acquire a single unit. Buyers can bid as often as they like and move between
auctions. We characterize a perfect Bayesian equilibrium for this decentralized dynamic mechanism
in which, conditional on reserve prices, an efficient set of trades occurs at a uniform price. In a large
but finite market, the sellers set reserve prices equal to their true costs under a very mild distributional
assumption, so ex post efficiency is achieved. Buyers’ strategies in this equilibrium are simple and do
not depend on their beliefs about other buyers’ valuations, or the number of buyers and sellers.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An important class of allocation problems involves multilateral exchanges where many
sellers and buyers meet to trade. Mechanism design offers a good deal of advice how to
organize trade in such environments. When efficiency is the primary concern, some modi-
fication of the Vickrey–Clarke–Groves (VCG) mechanism is a natural candidate. The VCG
mechanism has desirable incentive properties and allows to implement an efficient allo-
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cation in many environments, including the heterogeneous goods case. In an environment
where a single seller allocates the goods to privately informed buyers, the VCG mechanism
maximizes the seller’s revenue within the class of ex post efficient mechanisms [23,10].
The VCG mechanism runs an expected deficit when all traders have private information.
For this reason, it might not be feasible.

When budget balance and individual rationality constraints must be satisfied, double
auctions are a natural trading mechanism. In the homogeneous goods case, double auctions
are interim incentive efficient when there are sufficiently many buyers and sellers [21], and
become ex post efficient quickly as the number of buyers and sellers increases [19]. In a
seller’s offer double auction, 2 the buyers’ (but not generally sellers’) payoffs are the same
as in Vickrey auction.

A natural generalization of the seller’s offer double auction in the environments where
goods are not identical 3 is a mechanism where buyers describe their willingness to pay
for every good, while sellers announce their ask prices. An auctioneer then computes an
allocation that is efficient given the announced preferences, and sets the price in every trade
equal to the buyer’s Vickrey price. It has not yet been shown whether the desirable efficiency
properties of double auctions generalize to this mechanism, but it seems likely that they
would.

Finally, there are fairly simple algorithmic procedures that can be used to determine the
Vickrey prices and allocations. One such procedure for the case where each buyer wants
only a single good is described in [18]. Ausubel and Milgrom [2] study a dynamic proxy
bidding auction that leads to a Vickrey allocation in a Nash equilibrium within a setting
where buyers have demands for bundles of goods.

An important feature of all these mechanisms is their reliance on the centralized process-
ing of demand and supply information. Specifically, both in double auctions and in Vickrey
mechanisms buyers and sellers send messages to a center which uses this information to
compute an array of trades and prices, and then sends back the appropriate instructions to
buyers and sellers.

For reasons that are not yet completely clear, practise and theory usually diverge at
this point—especially in the case of popular internet auction markets. 4 In eBay, Ubid,
Amazon, or even Sotheby’s auction mechanisms, market demand and supply information
is not collected or aggregated at all. The auction house sets the overall trading rules, but
it neither calculates market clearing prices, nor sends instructions to buyers and sellers
regarding the trades which they have to execute. Instead, trading is organized in a way that

2 If there are m buyers and n sellers, then in a “seller’s offer” double auction the trading price is set equal to the
mth lowest value (from the bottom) among buyers’ bids and sellers’ asks.

3 Bajari and Hortacsu [3] describe an internet market for coins in which the objects being traded are obviously
not identical, but where the market otherwise looks very competitive. A similar example of an internet market for
antiques is described in [17]. Lucking-Reiley [11] observes that on eBay and other sites many sellers of the same
good often run their auctions simultaneously.

4 Internet exchanges continue to grow rapidly despite the end of the dot-com boom. The volume of trade at
business-to-business internet marketplaces has grown from $5 bln. in 1999 to more than $100 bln. in 2001 (see
[22,13]), while in consumer auction markets the volume of exchange was projected to grow from $ 12 bln. in 2002
to $54 bln. in 2007 (see [8]). The largest consumer-oriented site—eBay—had reported 56.1 million active users
in December 2004. eBay’s revenue in 2004 reached $3.27 bln.
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looks more like a competing auction market [16,12,15] than a double auction or Vickrey
mechanism. This is so despite the fact that some segments in these markets appear to be
ideal candidates for a simple double auction. 5 According to the rules of these mechanisms,
a seller is allowed to communicate with some set of buyers before choosing a partner and
setting her price. 6 An important principle appears to be that the price charged by a seller and
the identity of the seller’s trading partner can depend only on the messages sent by interested
buyers, but cannot depend on information about other sellers (such as their reserve prices),
or on messages sent by buyers to other sellers—properties that are fundamentally at odds
with the Vickrey approach. 7

Intuitively, we can regard these trading mechanisms as decentralized, in contrast to the
mechanism with centralized processing of demand and supply information. It is hard to
provide an encompassing and general definition of a decentralized mechanism. Below we
offer a definition which can be applied in this and similar environments where several sellers
offer their goods for sale to a group of buyers.

Any trading mechanism can be formally viewed as a mapping that converts the messages
sent by market participants into allocations for the entire market. We will say that a mech-
anism is decentralized if each buyer’s message is a collection of separate messages sent to
different sellers—one for each seller, and all actions of a particular seller and her final allo-
cation are independent of messages that the buyers send to other sellers. 8 In essence, our
definition simply says that the grand mechanism should be decomposable into a collection
of mechanisms run by individual sellers.

In this paper we do not try to explain what factors make decentralized mechanisms
attractive to buyers and sellers. Instead, we simply take for granted the existence of such
decentralized trading institutions, and focus on the incentive and coordination issues that
this institutional design generates.

Specifically, consider the following two aspects. First, when sellers run separate auctions,
buyers can independently communicate with many different sellers and thus manipulate
trading outcomes at a number of them. One implication of this is that the incentive properties
of any seller’s mechanism will typically depend on the mechanisms offered by the other
sellers. Second, an efficient outcome cannot be attained in a decentralized mechanism unless
the exchange of messages between buyers and sellers was truly dynamic. At the same time,
a dynamic procedure gives the traders an opportunity for manipulation at each stage.

The goal of this paper is to demonstrate that despite potential obstacles, there is a decen-
tralized trading mechanism for the multilateral exchange which possesses a perfect Bayesian
equilibrium supporting ex post efficient trade at Vickrey prices. In our mechanism sellers

5 Atsushi Kajii has suggested that video game software, which does not depreciate or vary in quality, could
easily be sold in a double auction. Instead, a number of manufacturers offer the games for sale on eBay with each
unit being sold in a separate auction.

6 The institutions themselves clearly constrain the set of messages that buyers and sellers are allowed to exchange.
On eBay, a buyer can only submit bids or accept prices, but cannot negotiate with the seller.

7 The price that a buyer pays in a Vickrey mechanism is chosen so that (s)he obtains exactly the marginal surplus
that (s)he generates. This marginal surplus depends on the costs of all sellers and on the valuations of all buyers.

8 Again referring to eBay, a buyer’s message is a bid or a set of bids at every seller. A particular seller’s price
and the identity of the buyer who she trades with can only depend on the bids that the buyers submit to her.
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independently run ascending second-price auctions where they are free to set reserve prices,
and buyers bid in multiple rounds. If their bids are not successful, the buyers can adjust them
and move between sellers costlessly. The bidding procedure adapts the process analyzed in
the literature on competing auctions (see, for example, [16]) by making it dynamic. This
mechanism is similar (but different in some important ways) to the one used by eBay.

The key part of this paper lies in the analysis of the bidding rule—the strategy that buyers
use to select among sellers’ auctions and choose their bids. The bidding rule that we design
is a simple function of the publicly observable market data. It requires a buyer to bid at
an auction with the lowest current price and raise his bid as slowly as possible (as long
as the bid is below his valuation). The only two pieces of information that a bidder needs
are the standing bid, i.e. the current price in the auction, and whether the standing bid has
changed since the last change of the winning bidder. In most internet auctions, the standing
bid and the identity of the winning bidder are typically published at all times. So to follow
our rule, a bidder only has to monitor the changes in the announced data. She does not need
to directly observe whether and when other bidders submit their bids.

Interestingly, following this rule constitutes a perfect Bayesian equilibrium in the bidding
process independently of buyers’beliefs about other buyers’valuations, and even the number
of other buyers. The outcome of this equilibrium is efficient provided that sellers set their
reserve prices equal to their true costs. So we proceed to show that it is an equilibrium for all
sellers to set reserve prices equal to their true costs when the number of traders participating
in the market is sufficiently large (but still finite). The remarkable part of our results is that
the outcome of the bidding process is efficient and sequentially rational (i.e. optimal at
every information set given the traders’ beliefs and their strategies), yet looks very much
like a simple algorithmic price adjustment procedure.

Our results are related to the work on the price adjustment procedures described, for
example, by Roth and Sotomayor [18], and on proxy bidding auctions by Ausubel and
Milgrom [2]. There are at least two aspects that distinguish our approach from their work.
First, we insist that buyers follow sequentially rational strategies at each information set
in the bidding game, so the final outcome of our bidding procedure constitutes a perfect
Bayesian equilibrium. 9 Second, many different sellers participate in our mechanism and
we analyze their strategic incentives in it, while Roth and Sotomayor [18] and Ausubel and
Milgrom [2] do not deal with the issue of the seller’s incentives at all.

The results in the second part of the paper regarding the sellers’ incentive to set their
reserve prices at or above their costs, are closely related to those in the literature on large
double auctions, e.g. [20,19], and more recently [6]. We show that our decentralized mecha-
nism is outcome equivalent to the seller’s offer double auction. In particular, the sellers who
set their reserve prices in independent auctions in our mechanism are exactly in the same
strategic situation that they face in this double auction. Satterthwaite and Williams [20] and
Rustichini et al. [19] demonstrate that sellers will set reserve prices near their true costs

9 Ausubel and Milgrom [2] consider an environment with heterogeneous goods and more general buyer demands.
In their auction, buyers submit bids through a proxy bidder in a manner that causes prices to rise in much the same
way that they do here. The proxy bidding strategies constitute a Nash equilibrium, yet there is no presumption
that the bids submitted by the proxy bidder along the price adjustment path are sequentially rational for the real
bidder.
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when there are many traders in a double auction, and the costs and valuations are distributed
independently. They do not prove existence of equilibria in double auctions. This problem
is resolved in [9] who establish the existence of an equilibrium with trade in private value
double auctions without requiring independence. Cripps and Swinkels [6] show that in all
equilibria where trade occurs with a positive probability, prices must be close to competitive
prices when there are enough traders—again without requiring independence.

We obtain somewhat stronger results by considering an environment where sellers and
buyers bid on a finite grid. We are able to show the existence of a fully ex post efficient
equilibrium when the number of buyers and sellers is large but finite. This result holds under
a very mild distributional assumption that each trader’s valuation/cost takes every value on
the grid with a positive probability. 10

To summarize, the overall contribution of the paper is two-fold. First, we construct a
decentralized fully dynamic bidding mechanism and demonstrate the existence of an ex
post efficient perfect Bayesian equilibrium in it, without assuming that valuations are in-
dependently distributed. Second, we strengthen the available convergence results for large
auctions by demonstrating that the sellers will post prices equal to their costs under a very
mild distributional assumption that a trader’s valuation takes each possible value with a
positive probability.

2. The model

There are n sellers and m buyers trading in a market. Each seller has one unit of a
homogeneous good, while each buyer has an inelastic demand for one unit of this good.
Buyers’ valuations and sellers’ costs are private information and are distributed on the grid
D ≡ {p, p + d, p + 2d, . . . , p} that has a step size d > 0. A buyer with valuation b who
wins a single auction at a price p gets surplus b − p. A buyer who wins more than one
auction gets no additional utility from the additional units of output (so his payoff will
decrease because he has to pay for the additional units). A sellers with cost c who sells at
price p get surplus p − c.

Let Fm,n(·) denote the probability distribution from which the array of buyers’valuations
and the sellers’ costs are drawn in the market with m sellers and n buyers. Our results on
equilibrium bidding behavior by buyers are independent of Fm,n(·) and the buyers’ beliefs
about it. In the analysis of the seller’s part of the game we assume only that, given any
number of buyers and sellers and the array of valuations and costs of other traders, a
particular buyer’s valuation or a seller’s cost take each value on the grid with a probability
that is bounded above zero. Thus, our results apply in both correlated and independent
private value environments.

Trade is organized in the following way. At first, sellers simultaneously announce reserve
prices in their auctions. Thereafter buyers arrive sequentially. When a new buyer arrives,
he is given an opportunity to submit one or more bids at whichever of the sellers’ auctions

10 A similar distributional assumption is used by Dekel and Wolinsky [7] to establish the convergence result in
a single-object first-price auction with a discrete grid of bids and values. They show that each buyer will choose
the bid closest from below to her true value when the number of buyers is large. The main difference of our case
is that we allow both the number of buyers and the number of objects (sellers) to increase at the same rate.
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he likes best. Buyers are required to submit bids in the grid D. 11 When a seller receives a
bid, she publishes a number called her standing bid which is equal to the second highest
bid that she has received, or her reserve price if she has not received more than 1 bid. Each
seller immediately updates her standing bid announcement when her standing bid changes.
We assume that, as in most on-line auctions, the identity of the high (winning) bidder is
made public by each seller, 12 though the high bid itself is not revealed (although it can
be inferred if the standing bid is raised later). The standing bids and the identities of the
winning bidders are the only two observables in our model.

We assume throughout that the second-highest bid means second highest bid submitted
by a distinct bidder. The standing bid is assumed to remain unchanged if the high bidder
revises his bid. A new bid submitted at a seller’s auction must always exceed that seller’s
current standing bid. If two or more bidders have submitted the same high bid, then the
buyer who was the first to submit this bid is declared the winning bidder. The standing bid
in this case is equal to the high bid.

After a buyer finishes submitting her bid(s), each buyer in order of his or her entry into
the market is given the opportunity either to submit new bid(s) (not necessarily with the
same seller) or pass. Once each buyer in the market chooses to pass, a new buyer enters.
After all buyers have entered the market, the bidding process continues as bidders update
their bids one after another. The order of bidding at this stage is the same as the order of
entry with the last bidder followed by the first bidder and so on. Bidding continues until
all buyers pass. Then the high bidder at each seller trades at the final standing bid with that
seller.

The goal of this paper is not so much to model the details of a particular auction mech-
anism, as it is to establish the existence of a relatively simple decentralized process that
generates an ex post efficient outcome. It seems reasonable to conjecture that the same result
holds under a large class of auction rules. However, the buyers’ bidding game is complex
enough that verifying the robustness of our results to small changes in the auction rules is
quite difficult.

Despite the second price nature of the auction mechanism, the presence of multiple
auctions implies that it is not a dominant strategy and not even a sequentially rational
strategy in a perfect Bayesian equilibrium for buyers to bid their true valuations when they
start bidding. We illustrate this point in some detail with an example, since it provides
motivation for the bidding rule that we study below.

To see the argument, suppose that there are two buyers 1 and 4 with true valuations b1
and b4 and two sellers who announce reserve prices s1 and s2. Let b1 > s2 > s1. Visually,
consider the data in Fig. 1, but ignore points b2 and b3 and allow b4, which is not shown
in the figure, to take all possible values. Suppose that buyer 1 with valuation b1 enters first
and expects buyer 4 to bid his true valuation b4 at one of the sellers.

11 This assumption is natural in view of our interpretation that the grid on which the traders’ valuations are
distributed is determined by the minimal monetary unit.

12 As will be shown later, this assumption, or more precisely, the observability of the change in the identity of
the high bidder is important for the uniform price result. When such changes are not observable, price dispersion
may occur.
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Fig. 1.

We will show that buyer 1 can earn a higher expected payoff if, instead of bidding b1 at
the start of the bidding game, he submits a bid equal to s2 at seller 1. If buyer 1 starts by
bidding with seller 2, then it is optimal for buyer 4 to bid with seller 1 who has a lower
reserve price. No matter what bid buyer 4 submits, buyer 1 will trade at price s2. Yet, buyer
1 can strictly increase her expected payoff by initially bidding s2 at seller 1, because there
is a positive probability that buyer 4’s valuation is below s2. Even if buyer 4’s valuation is
above s2 and she bids it at seller 1, the worst that can happen to buyer 1 is that she bids b1
at seller 2 and gets the good at s2.

Next, suppose that buyer 1 bids his valuation with seller 1. When buyer 4 enters, the
standing bid with seller 1 is still equal to s1, because seller 1 has yet to receive a second bid.
If buyer 4 bids at seller 2, then the bidding ends and buyer 1 trades with seller 1 at price s1.
The same outcome would occur if buyer 1 bid s2, and not her valuation, initially. If buyer
4 bids her valuation at seller 1, then three cases are possible.

Case 1: b4 �s2. Then buyer 1 will trade at price equal to max{s1, b4}. The same outcome
will occur if initially buyer 1 bids s2, instead of b1, at seller 1.

Case 2: b4 > b1. Then buyer 1 will be displaced as high bidder at seller 1 and will trade
at price s2 with seller 2, no matter whether she bids b1 or s2 initially.

Case 3: b4 ∈ (s2, b1] (which occurs with a strictly positive probability). If buyer 1 bids
b1 at the start, then she will trade with seller 1 at price equal to b4. However, if buyer 1 starts
by bidding s2, she will be displaced as high bidder at seller 1. She can then bid at seller 2
and trade with her at price s2. Thus, bidding s2 ensures that buyer 1 never has to pay a price
above s2 and improves her expected payoff.

3. Efficient bidding

The advantage of sequential bidding is that buyers whose valuations are high, but who
had the bad luck of bidding against another buyer with an even higher valuation, have
an option to bid again elsewhere. Unfortunately, this option is not sufficient to guarantee
that, conditional on the sellers’ reserve prices, the efficient trades are carried out. We will
demonstrate below that the dynamic bidding game has multiple equilibria some of which
are inefficient. We will not attempt to characterize all of them. Rather, our objective is to try
to identify bidding equilibria that have nice properties, especially, the ones that are efficient
conditional on the announced reserve prices.



M. Peters, S. Severinov / Journal of Economic Theory 130 (2006) 220–245 227

To begin, let b = {b1, . . . , bm}be the vector of buyers’valuations, and let c = {c1, . . . , cn}
(s = {s1, . . . , sn}) be the vector of sellers’ costs (reserve prices). Let vm(b, s) be the mth
lowest (from the bottom) valuation in the vector (b, s). When the argument of this function
is clear from the context, we will simply use the notation vm.

If the sellers’ reserve prices are equal to their true costs, then an efficient set of trades
occurs if buyers whose valuations exceed vm trade with sellers whose reserve prices are
less than or equal to vm. To see why, note that efficiency implies that m traders who end up
without the good have the lowest valuations or costs. In competitive terms, the price vm is
the lowest price that clears the market given the demand and supply schedules generated
by the buyers’ valuations and the sellers’ reserve prices. It is also easy to see that vm is a
‘Vickrey’ price ensuring that every buyer who trades gets an amount of surplus equal to the
difference between the maximal apparent gains to trade between all buyers and sellers and
the maximal apparent gains to trade when buyer i is left out of the allocation, under the
given array of the buyers’ valuations and the sellers reserve prices.

We now define the symmetric strategy �∗ by specifying how each buyer should bid in
our bidding game when his turn comes.

Definition 1. The symmetric strategy �∗ is defined as follows. When it is the buyer’s turn
to bid then

(a) if the buyer is the current high bidder at any auction, or if the buyer’s valuation is less
than or equal to the lowest standing bid, the buyer should pass;

(b) otherwise, if there is a unique lowest standing bid, the buyer should submit a bid with
the seller who has this lowest standing bid. The bid should be equal to the lowest value
on the grid that exceeds this lowest standing bid;

(c) otherwise, if more than one seller has the lowest standing bid, the buyer should submit
the same bid as in (b) but choose among the sellers with the lowest standing bid according
to the following rule: select with equal probability each of the sellers where the standing
bid has changed since the last change of the winning bidder and sellers who have not yet
received a bid. If there are no sellers in either of these two categories, a bidder should
randomly choose between all sellers whose standing bid is the lowest.

According to strategy �∗, a buyer should always bid at one of the sellers with the lowest
standing bid. Then active buyers will continue to bid up the standing bid with this group
of sellers until their standing bids reach the level of the standing bids at the next group of
sellers (which in equilibrium would be equal to the reserve price of these sellers). Active
buyers will then continue to bid with sellers from both groups until the lowest standing
bid reaches the level of standing bid at the next group of sellers, and so on. This process
continues until all remaining active bidders become high bidders with different sellers.

The only part of strategy �∗ that requires a more detailed explanation is rule (c) which
tells the buyer how to choose among the sellers with the lowest standing bids. In essence, it
allows a buyer to identify which of these sellers have lower winning bids (recall that winning
bids are unobservable). Bidding only at such sellers is optimal for the buyer, because then
with some probability the buyer will trade at a lower price. At the same time, such bidding
ensures that standing bids rise more slowly and eliminates the possibility of price dispersion.
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To understand why rule (c) allows to identify the sellers with the lowest winning bids
when all buyers use strategy �∗, note that a new winning bid is always strictly above the
standing bid (by one grid point) and displaces the previous winning bidder without changing
the standing bid. In contrast, an unsuccessful bid causes the standing bid to rise without
displacing the high bidder. Thus, when two standing bids are the same, the one where the
standing bid has changed after a change in the identity of the winning bidder will have a
lower winning bid, and this is where the buyer should bid according to rule (c).

Before proceeding further, it might help to visualize the path generated when buyers use
strategy �∗ in a simple demand–supply style diagram. We refer again to Fig. 1, where the
valuations and reserve prices of three buyers and two sellers are shown. This example is
designed just to illustrate the path of the bidding game when the buyers use strategies �∗,
so for convenience we can assume that the grid of feasible bids coincides with the set of
sellers’ reserve prices s1, s2 and buyers’ valuations b1, b2, b3. Buyers enter in order of their
indexes, so buyer 1 with valuation b1 enters first, and buyer 3 enters last. According to
strategy �∗, when buyer 1 enters he bids s2 with seller 1, because seller 1 initially has the
lowest standing bid and s2 is the lowest valuation on the grid that exceeds s1. This bid will
be successful, but it will have no effect on seller 1’s standing bid.

Buyer 2 will also bid s2 with seller 1, since seller 1’s standing bid is still the lowest. This
bid by buyer 2 will not be successful, but it will cause the standing bid with seller 1 to rise to
s2. Unsuccessful bids always change a seller’s standing bid, since buyers must submit bids
above the current standing bid. As buyer 1 was the first to bid s2, he remains a high bidder
and passes by (a), so buyer 2 has a chance to submit a new bid. Now both sellers have the
same standing bid. The standing bid with seller 1 has changed after the winning bidder has
changed, and seller 2 has not yet received a bid. The lowest value that exceeds the standing
bid s2 is b1, so by (c) buyer 2 will bid b1 with equal probability at seller 1 (case A) or seller
2 (case B). In either case, buyer 2 will become a high bidder but his bid will not affect either
of the standing bids. Note that a winning bid never changes the seller’s standing bid.

Consider case A first. Since buyer 2 displaces buyer 1, buyer 1 immediately submits a
bid equal to b1 with seller 2 by rule (c), since seller 2 has yet to receive a bid. This bid is
successful, but does not affect seller 2’s standing bid which remain equal to s2. When buyer
3 enters, he finds that at either seller the standing bid has not changed since the last change
of the high bidder, so he will bid b1 at one seller, and then at the other in random order.
Neither bid by buyer 3 will be successful, but the standing bids at both sellers will rise to b1.
Then buyer 3 will bid b2 choosing randomly between the two sellers (since at each seller
the standing bid has risen after the high bidder has changed). If buyer 3 bids b2 first with
seller 1, then he will displace buyer 2, who will, in turn, bid b2 at seller 2 and become a
high bidder there. Bidding will then stop, and buyers 2 and 3 will trade at price b1. If buyer
3 bids b2 first with seller 2, his bid will be successful and all bidding will stop.

Now consider case B. After buyer 2 becomes a high bidder with seller 2, buyer 3 enters
and submits bid b1 at seller 1 displacing bidder 1 as a high bidder without raising the
standing bid above s2. Buyer 1 will then submit bid b1 at sellers 1 and 2 in random order,
which will raise standing bids at both sellers to b1, but bidder 1 will not become a high
bidder. The bidding will then stop and buyers 2 and 3 will trade.

This example conveys the essential idea. Buyers bid up prices with each seller as slowly as
possible. For this reason, high-valuation buyers are never trapped into paying higher prices if
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another high-valuation buyer accidentally bid against them. In this example, efficient trades
occur and both sellers trade at a uniform price equal to buyer 1’s valuation. The randomness
on the path generated by �∗ makes possible different pairwise matching combinations
between buyers and sellers. However, the uniform trading price is uniquely determined by
the profiles of buyers’ valuations and sellers’ reserve prices. These properties of the strategy
rule �∗ make it an equilibrium choice, as the following theorem demonstrates:

Theorem 1. It is a perfect Bayesian equilibrium of the bidding game for all buyers to use
the strategy �∗. For each array of valuations and reserve prices (b, s), each buyer whose
valuation is above vm trades with some seller whose reserve price is no larger than vm. Each
seller whose reserve price is below vm trades for sure with some buyer whose valuation is
at least vm. All trades occur at price vm.

Proof. See the appendix. �

The central implication of Theorem 1 is that the outcome of the bidding game is efficient:
traders who are left without the good at the end of the day are the ones who have the lowest
valuations and reserve prices. Thus, apparent gains from trade are maximized.

The strategy �∗ contains the same set of rules on and off the equilibrium path. But
although the equilibrium path is relatively simple, the proof that playing �∗ constitutes a
perfect Bayesian equilibrium is sufficiently complex. Perfect Bayesian equilibrium requires
�∗ to be sequentially rational, i.e. for each bidder �∗ must be a best reply to the other bidders’
play of �∗ at every information set, even the ones which are ‘far away’ from the equilibrium
path and can be reached only after multiple deviations from �∗ by several players. Showing
this turns out to be a challenging task due to the complexity of the dynamic bidding game
involving multiple auctions and the buyers’ switching between them.

Our proof works as follows. We fix an arbitrary information set in the bidding game
and consider the continuation game starting from it. First, we characterize the outcome of
this continuation game when all players follow �∗. This part of the proof also provides a
characterization of the candidate equilibrium outcome obtained when all players always
follow �∗ from the start of the game. Then we demonstrate that an arbitrarily chosen bidder
i cannot improve her payoff in this continuation game by a unilateral deviation from �∗.
Specifically, we show the following. If buyer i submits a bid which is higher than what is
prescribed by �∗ and/or submits multiple high bids whereas all other buyers follow �∗, then
the trading price would be at least as high and the expected number of units that i would
purchase would be at least as large as when she does not deviate from �∗ in the continuation
game. Since buyer i purchases the desired number of units at the trading price that prevails
when all buyers follow �∗ in the continuation, such deviation cannot be profitable. 13 At the
same time, a buyer who at any stage bids as if his valuation is lower than what it really is, can
sometimes lower the trading price, but only by giving up a desirable trading opportunity.

Note that neither the description of strategy �∗, nor the proof that �∗ is a best response
depend in any way on the distribution of valuations, or the number of buyers and sellers in

13 By the one-deviation property, it is sufficient to consider buyer i’s strategies that involve a deviation from �∗
at a single information set in the continuation game.



230 M. Peters, S. Severinov / Journal of Economic Theory 130 (2006) 220–245

an auction. Our proof does impose some restrictions on buyers’ beliefs in off-equilibrium
continuation games. First, when buyers observe data that are inconsistent with all buyers’
using the strategy�∗, they believe that the underlying deviation is ‘minimal’in an appropriate
sense. In particular, a bid submitted by a deviator is believed to be as close as possible to
the bid prescribed by �∗ provided that it can still produce the observed data.

Second, all buyers believe that the valuation of the high bidder in any auction is at least
as high as the standing bid in that auction. This imposes a restriction in the case where
the buyers are certain about each other’s valuation at the beginning of the bidding process
or the distributions of the valuations do not have full support. Consider the former case,
for example. It is possible that some buyer might deviate and become a high bidder with
a seller whose standing bid is above that buyer’s valuation. We require that buyers revise
their initial beliefs in this case, and believe that the deviating buyer’s valuation is at least
as high as her bid. However, this belief rule, unlike the first one, is not necessary for our
equilibrium and any alternative one would do as well, while the first rule does not involve
beliefs about valuations. Therefore, we can say that �∗ constitutes an ‘ex post’ equilibrium,
i.e. it remains an equilibrium even if buyers know each other’s valuations. We regard this
as an important property confirming the robustness of our equilibrium.

Another important property of the equilibrium where buyers use �∗ is the absence of
price dispersion in the final outcome: all trades are executed at the same price. As explained
above, rule (c) in �∗ plays a crucial role in this.

The efficiency in the bidding game can be attributed to the rules of our mechanism which,
in our interpretation, are designed by a large institution (internet exchange) in the context of
which individual sellers offer their goods. It is important to understand to what degree our
efficiency results are robust to changes in these rules. Addressing this issue in full generality
is outside the scope of this paper. Still, it is easy to see that the non-observability of the
high bids combined with our restriction on beliefs off the equilibrium path—we insist on
the minimal revision of equilibrium beliefs following a detected deviation—ensure that
preemptive bidding does not occur in our mechanism.

On the other hand, if the high bids were observable, then the game would have an
equilibrium in which the first buyer in order of entry submits the highest possible bid p

at the seller with the lowest reserve price, the second buyer in order of entry submits the
same bid p at the seller with the second lowest reserve price, and so on. No other buyer
would bid at a seller who has received the bid p. Thus, buyers who are among the first
to enter would be able to ‘clinch’ the goods by such preemptive bidding and trade at the
reserve prices. Since these buyers can have lower valuations, inefficiency arises. Clearly, in
this equilibrium sellers will be more inclined to post reserve prices above costs than in the
equilibrium that we study.

The bidding problem that we consider is similar to the matching environment discussed
in [18]. Their environment differs from ours in that buyers may have different valuations for
the goods offered by different sellers, while in our case the goods are homogeneous, and we
fully analyze the traders incentives. Consider any stage of our bidding process and suppose
that all buyers follow strategy �∗. If the number of buyers willing to pay strictly more than
the lowest standing bid is greater than the number of sellers with this standing bid, then
the set of goods offered at this lowest standing bid constitutes what Roth and Sotomayor
call an overdemanded set. The subsequent bidding will raise each of the standing bids of
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sellers in that set by one grid point. In this sense our bidding rule implements the algorithm
discussed by Roth and Sotomayor. The content of Theorem 1 is to show that there is a perfect
Bayesian equilibrium for which the algorithm is not subject to strategic manipulation at any
time during the course of the procedure. What makes the argument difficult is the fact that
we have to deal with situations that could never occur in the bidding process under the
simple application of the Roth–Sotomayor algorithm.

For each array (b, s) of buyers’valuations and sellers’ reserve prices, Theorem 1 uniquely
specifies the price at which all trades will be executed. Precisely, the trading price will be
equal to vm(b, s) which is either the highest valuation among buyers who fail to trade, or the
highest reserve price among sellers who trade, depending on the actual array of valuations
and reserve prices. Buyers whose valuations strictly exceed vm and sellers whose reserve
prices are strictly below vm will trade for sure. At the same time, the randomization on the
equilibrium path (buyers randomize between the sellers among whom they are indifferent)
implies that the outcome for traders whose valuations or reserve prices are exactly equal to
vm(b, s) may be random: they may or may not trade.

To better understand whether buyers and sellers whose valuations and costs are equal to
vm trade, let us divide the sets of buyers and sellers into three groups. For any array (b, s),
let M1/M2/M3 be the set of buyers whose valuations are, respectively, strictly lower than
vm/ exactly equal to vm/ strictly higher than vm. Similarly, let N1/N2/N3 be the sets of
sellers who set their reserve prices below/equal to/ above vm, respectively. Let mi (ni) be
the number of buyers (sellers) in the set Mi (Ni). Theorem 1 says that buyers in M3 and
sellers in N1 will trade for sure, and that buyers in M1 and sellers from N3 will not trade.

Corollary 1.14 If all buyers use the strategy �∗ in the bidding game, then the number of
sellers with reserve prices equal to vm who trade is between

max[0, m3 − n1] and min[n2, m3 − min{0, n1 − m2}]
while the number of buyers with valuations equal to vm who trade is between:

max[0, n1 − m3] and min[m2, n1 − min{0, m3 − n2}].

Of course, the efficiency in the buyers’ game does not guarantee that the equilibrium
outcome of the mechanism will be efficient, since the sellers may set reserve prices that
are different from their true costs. Before we turn to the issue of the sellers’ incentives in
the next section, it is worth pointing out that our bidding game has multiple equilibria. The
following example illustrates another plausible, yet inefficient equilibrium.

In Fig. 2, given sellers’ reserve prices s1 and s2 the efficient outcome is for buyer 2 to
trade with seller 1. However, consider the following strategies. If a buyer finds that no other
bids have been submitted and his valuation is at least s1, then he submits a bid equal to
s2 with seller 1. If there is a bid at seller 1, then the buyer bids his valuation with seller 2
provided his valuation is at least as large as s2, and refrains from bidding otherwise. This
strategy is optimal for the buyer who enters first because she ends up trading with seller 1
at price s1. Following this strategy is also optimal for the buyer who enters last, because he

14 The Proof of the Corollary is available at http://microeconomics.ca/sergei_severinov/proofsinternetauc.pdf.
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Fig. 2.

believes (correctly) that the buyer who has already entered has bid s2 at seller 1. Therefore,
there is a perfect Bayesian equilibrium in which both buyers use this strategy. Given the
data in Fig. 2, in this equilibrium buyer 1 will trade with seller 1, and buyer 2 with a higher
valuation will trade with seller 2. Note that the existence of this inefficient equilibrium is
invariant to the order of moves: if we reverse the order of entry and let buyer 2 enter first,
inefficiency would obtain when b1 > s2 > b2 > s1.

The example demonstrates that our mechanism does not support efficient trade as a unique
outcome. Nevertheless, we believe that it is unrealistic to hope for simple mechanisms that
will uniquely support efficient trade. Typically, complex and unrealistic mechanisms need
to be constructed to fully implement efficient allocations. We leave this problem for future
research. Our goal is to demonstrate that efficiency could be attained with ‘plausible’looking
indirect mechanisms in strategies robust to perturbations in the traders’ beliefs about each
other.

4. Optimal reserve prices in a large market

The results of the previous section indicate that the buyers’ equilibrium strategies guar-
antee that an efficient set of trades occurs when sellers set reserve prices equal to their true
valuations.Yet, the outcome will not necessarily be efficient if sellers set reserve prices that
are different from their true costs. So we turn to an examination of sellers’ behavior in this
section.

It may not be optimal for a seller to set a reserve price equal to her true valuation, because
her reserve price may in some cases affect the trading price. For example, consider the
situation depicted in Fig. 1 without buyer 1 (the one with the lowest valuation) and let
buyer 2’s valuation b2 still be undetermined. From this figure it is clear that, if buyers use
strategy �∗, the uniform trading price will be equal to the higher reserve price as long as it
is below b2. Since b2 is random, seller 2 could raise the trading price with a strictly positive
probability by raising her reserve price above s2. The cost of doing this to seller 2 is that
she would fail to trade if buyer 2’s valuation happens to be between s2 and her new higher
reserve price.

This tradeoff is similar to the one which traders face in the standard double auction. In fact,
there is a close link between our decentralized mechanism and the “seller’s offer” double
auction where the trading price is set equal to the mth lowest value (from the bottom) among
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buyers’ bids and sellers’ asks. Satterthwaite and Williams [20] show that a buyer in this
double auction will optimally bid his true valuations. So, the trading price in the “seller’s
offer double auction” is also equal to vm. Since in our decentralized market and in the
“seller’s offer double auction” all sellers set their reserve prices simultaneously, the payoff
that a seller gets after posting a particular reserve price is the same in both mechanisms for
every array of buyers’valuations and other sellers’ reserve prices. So, from the seller’s point
of view they are strategically equivalent. Consequently, the sets of equilibrium outcomes
and associated prices must also be the same in the two mechanisms (provided that the buyers
follow the strategy �∗ in our mechanism).

Our next result establishes that in our framework with a finite grid of valuations, an ex
post efficient equilibrium in which sellers post reserve prices equal to their true costs exists
when the number of traders is sufficiently large, but finite. This result holds under a very
mild distributional assumption that each trader’s valuation/cost takes every value in the grid
D with a positive probability which is bounded above zero. Thus, we extend the results of
Rustichini et al. [19] who show that the sellers’ optimal ask prices and buyers’ optimal bids
converge to their true costs and valuations in a double auction when the costs and valuations
are independently and continuously distributed over an interval. 15

Slightly modifying the notation used in the previous section, let bm (bm
−i) denote an

array of the realized valuations of all buyers (all buyers other than i) in an m-buyer mar-
ket. Similarly, let cn (cn

−j ) denote an array of the realized costs of all sellers (all sellers

other than j ) in an n-seller market. Further, let f i(p|bm
−i , cn) (gj (p|bm, cn

−j )) denote the
conditional probability that buyer i’s (seller j ’s) valuation (cost) is equal to p given the
profile bm

−i , cn of other buyers’ and sellers’ valuations and costs. Finally, let f (p)m,n =
min1� i �m,bm−i ,c

n f i(p|bm
−i , cn), and g(p)m,n = min1� j �n,bm,cn−j

gj (p|bm, cn
−j ). Note

that the minimum is taken across all buyers (sellers) and across all possible profiles of other
buyers’ valuations and sellers’ costs. These minima exist because the number of buyers and
sellers and the number of feasible valuation/cost profiles are finite. Our main assumption
is as follows:

Assumption 1. ∀p ∈ D ∃f (p) > 0, g(p) > 0 s.t. f m,n(p)�f (p) and gm,n(p)�g(p)

∀m, n.

Assumption 1 is satisfied in many well-known environments. For example, it holds when
a buyer’s valuation and a seller’s cost are conditionally independent given the realization
of some random variable, and all conditional distributions have a full support.

Let us consider a sequence of auction markets that get larger as the number of traders
increases. For simplicity, we hold the ratio of the number of buyers to the number of sellers
constant at k > 0 i.e., m = kn. The main result of this section is the following theorem
which establishes that setting a reserve price equal to the true cost constitutes an equilibrium
strategy for the sellers when the number of traders in the market is sufficiently large.

15 Rustichini et al. [19] have to assume the existence of an equilibrium where trade occurs with a positive
probability, while we directly establish the existence of an equilibrium in our framework.
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Theorem 2. Suppose that Assumption 1 holds, and that f (p), g(p), (p ∈ D), and the
number of buyers m and sellers n in the market are common knowledge. If the buyers follow
the strategy �∗, and if m and n are sufficiently large, then it is a perfect Bayesian equilibrium
for each seller to set her reserve price equal to her true cost.

Theorems 1 and 2 together imply that an ex post efficient outcome is attained in our
decentralized mechanism when the number of traders is sufficiently large but finite. For
this result to hold, the buyers need not have any information about other traders, while the
sellers only need to know the number of other traders and the (positive) lower bound on the
probability that a buyer’s valuation and the seller’s cost takes a particular value.

Thus, this paper contributes to the literature that searches for mechanisms that are ‘detail-
free’ i.e. mechanisms whose design does not depend on the distributions of the traders’
valuations and the common knowledge of these distributions.

The proof of Theorem 2 demonstrates that seller j with cost c < p obtains a higher
expected payoff by setting reserve price equal to p − d rather than p when the number of
traders is sufficiently large, and all other sellers set their reserve prices equal to their true
costs. To understand this result, consider the tradeoff that a seller faces when she decides
whether to set a higher reserve price p > c or cut it to p − d.

The cost to a seller of cutting the reserve price is that she may actually trade at price
p − d, while she would have traded at price p had she set the reserve price at that higher
level. In other words, the cost is incurred if a seller trades irrespectively of which of the two
reserve prices she posts, but her decision affects the price in the market. The seller gains
from cutting her reserve price if this allows her to trade (either at price p − d or p), while
she does not trade after posting p.

It is easy to see that the gain outweighs the cost of cutting the reserve price, if the
probability that a seller trades at p when she posts price p−d is greater than the probability
that she trades at p when she posts price p. Of course, the probability that trade occurs at
any particular price goes to zero as the number of traders increases. But when we compare
these two probabilities, we can condition on the event that price p is pivotal, i.e. the profile
of all buyers’ valuations and n − 1 sellers’ costs is such that if the remaining seller j posts
reserve price p, then the trading price would be equal to p. If price p is pivotal, then seller j

posting reserve price p − d always trades, but the trading price could be either p or p − d.
So, we can restate the desired claim as follows: Conditional on the event that price p is

pivotal, the probability that a seller’s decision to post price p or p − d does not affect the
trading price (i.e. the price remains at p) is greater than the probability that seller posting
price p trades. The proof establishes that this claim is true when the number of traders in
the market is sufficiently large.

To understand the intuition behind this result, suppose that all sellers other than j set
their reserve prices equal to their true costs. Let p be pivotal, i.e. equal to the (m − 1)-th
lowest value in the array consisting of the valuations of all buyers and the costs of sellers
other than j . Given that the number of both buyers and sellers is large, the expected number
of sellers with cost p and buyers with valuations p is also large.

The last observation has two implications. First, by Corollary 1, if the seller sets a reserve
price equal to the trading price, she will be competing with all other sellers who set this
price. Because of this competition a seller posting pivotal price p will often fail to trade.
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Second, conditional on the event that p is the (m − 1)-th lowest values in the vector of
valuations of all buyers and costs of sellers other than j , the probability that p is also the
m-th lowest value in this vector is large. But if both (m − 1)-th and m-th values in this
vector are equal to p, then j ’s decision to set reserve price at p or p − d does not affect
the trading price: it will be equal to p either way. So, conditional on p being pivotal, the
probability that seller j cannot affect the trading price by lowering his reserve price from
p to p − d is large. In fact, we can show that this probability goes to 1 as the number of
traders increases. These observations explain why the desired claim is true.

5. Conclusions

Several remarks are in order about the results of this paper. First, the equilibrium in
buyers’ bidding game that we describe is not unique. Examples in the paper illustrate that
alternative equilibria exist and do not generally guarantee efficient allocations. This is not
surprising, since an equilibrium in a decentralized market involves coordination of matching
decisions of many buyers and sellers. Coordination problems almost always have multiple
equilibria and having to choose among them seems inevitable. 16

At the same time, the equilibrium behavior that we identify has a number of advantages.
It is simple, requires very little computation on the part of traders, and is invariant to the
distributions from which costs and valuations are drawn, i.e. robust to perturbations in the
traders’ beliefs about each other. It also implements an efficient allocation. These properties
make it reasonable to believe that this equilibrium is focal, and that traders will coordinate
on this equilibrium eventually.

To play strategy �∗, a buyer needs only three pieces of information: the current profiles
of high and standing bids and whether a seller’s standing bid has changed after the change
of the high bidder. Thus, �∗ can be easily implemented via a software robot similar to the
one that is used by eBay, making buyer’s bidding costs (e.g. costs of time and attention)
negligible. Such software would be extremely simple: it needs to keep track of only three
pieces of information per seller and would always use the same rule to compute the bid.

It is natural to expect some discrepancy between our results and empirical observations,
since our model does not reproduce all the details of the bidding behavior at the eBay, Ubid,
Amazon, and other auction sites. These auctions typically possess additional aspects and
rules that we do not consider. For example, sellers enter at random times, as do buyers.
Auctions close at different times. Furthermore, bidding is not completely costless at these
sites. Roth and Ockenfels [17] suggest network congestion and unexpected demands by the
family as reasons why bidders may not be able to revise a bid as intended.

Nonetheless, we believe that our model does provide some insights into the workings
of these institutions and some empirically testable implications. Our theory implies that
bidding behavior of buyers in an auction on eBay cannot be determined in isolation. The
decision where and what to bid is largely affected by other alternatives available at the time.

16 Second-price auctions, for example, possess asymmetric equilibria in which bidders do not bid their true
valuations. There are multiple equilibria in centralized mechanisms, such as double auctions, as well.
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Furthermore, internet auctions provide bidders with more information, and make it easier
for them to communicate with many sellers and coordinate their behavior. In particular,
patient revision of bids generates signals which the buyers need in a decentralized market
to coordinate their bidding. All these factors imply that internet auctions are quite different
from the one shot auctions that dominate auction theory.

The bidders’ behavior in our model is based on one simple principle: a bidder carefully
explores trading opportunities with all sellers before raising her bid with a given seller. An
extension of this logic suggests an explanation for observed flurry of active bidding close
to the end dates in the eBay auctions. One of the opportunity costs of submitting a bid
on eBay arises from the possibility that a new seller will enter and post a lower reserve
price after the buyer submits his bid. The buyer may then end up trading at a higher price
than he needs to. Effective coordination of bidding among buyers then demands that they
refrain from bidding as long as possible. Since auctions at eBay have fixed end dates,
at some point the probability that new sellers will enter before the current auction ends
becomes small, and buyers will start bidding. Our theory suggests that this late bidding in
an auction that is about to close may also induce a flurry of bidding at other auctions for
similar goods.

Anwar et al. [1] have tested some of the implications of our theory of traders’ behavior
in competing auctions in the context of their study of computer CPU auctions on eBay.
They find that a significant proportion of buyers bid across several competing auctions and
usually place bids at auctions with the lowest standing bid. Also, more bidders bid across
auctions when the difference of ending times between the auctions decreases. Anwar et al.
[1] do not specifically study the effect of competing auctions on the price profile, although
in their sample prices are typically not uniform which, in our view, could be due to the fact
that auctions do not end simultaneously on eBay.

More empirical work remains to be done on this and other issues arising in competing
auctions. Although to this date empirical studies of internet auctions has typically focussed
on single-auction environments, 17 we hope that this paper will help to stimulate an interest
of empirical researchers towards the study of competing auctions. Understanding traders’
behavior in such environments appears to be a fairly important task.
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Appendix

Proof of Theorem 1. Let the state of the game be the array of buyers’ valuations, sellers’
standing bids together with the identities of buyers who have submitted them, the winning

17 For an insightful survey of the relevant literature, see Bajari and Hortacsu [4].
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bids together with the identities of the winning bidders, the history of the standing bids and
winning bids, and the order in which the buyers move. There is a one-to-one relationship
between the nodes in the game and its states. Precisely, the state of the game is a full
description of the corresponding node in the game. Define public state of the game as the
union of all components of the state of the game that are publicly known. Specifically,
public state of the game includes the standing bids, the identities of the winning bidders,
the history of all these, and the order of moves. We will assign indices to buyers based on
the order of entry, with buyer 1 arriving first and having the first opportunity to submit new
bid(s) after being outbid, and so on.

At each information set where a buyer is called to move, this buyer knows the public
state of the game, her own high bids and her bidding history. Information sets are partially
ordered: one information set precedes the other if the latter can be reached via some sequence
of moves from the former. A path of the game is a collection of all information sets such that
for any pair of information sets in it one can be reached via some sequence of moves from
the other. Along any path, one information set precedes the other iff the standing bid at each
seller at the former information set is (weakly) lower than at the latter. We will often refer
to this property in the proof. Finally, we will say that the bidding game is at the terminal
stage if it has reached an information set (or, equivalently, a state) such that no new bids are
submitted on the continuation path from it.

We will establish that the bidding game has a perfect Bayesian equilibrium in which all
buyers follow the strategy �∗ on and off the equilibrium path, and their beliefs in every
information set on and off the equilibrium path are described by the following rules:

Belief Rule 1: Inference about high bids. If the standing bid at a seller has changed after
the last change in the identity of the winning bidder, then the high bid at this seller is equal
to the standing bid. If the standing bid has not changed since the last change of the winning
bidder, then the high bid is one step d above the standing bid.

Belief Rule 2: A buyer’s valuation is at least as large as the maximum of her inferred
high bids which she holds or has held at some prior information set, with inference done
according to Belief Rule 1.

Belief Rule 3: The posterior beliefs about a buyer’s valuation held by other buyers are
characterized by a posterior distribution obtained from the prior by conditioning on the
event that this buyer’s valuation is at least as large as the cutoff level inferred according to
Belief Rule 2. 18

Clearly, these beliefs are rational on an equilibrium path where all bidders follow �∗.
Certain deviations from �∗, for example, a buyer bidding above his valuation, are not ob-
servable and do not affect other buyers’beliefs. Deviations that are detected are of two kinds.
First of all, a buyer may become high bidder with more than one seller. Our specification
of beliefs allows this. Second, if a seller’s standing bid changes more than once without a
change in the identity of the winning bidder, then the winning bidder must have deviated
from �∗. In this case, according to Rule 1, the other buyers believe that the deviation is the

18 Since a buyer also observes the decision of another buyer to pass and not to bid at a certain information set,
(s)he can also make an inference that the valuation of the buyer who has passed is no higher than the lowest
standing bid at that information set. Our results are invariant to this observability assumption and the associated
inference, and so we do not include it in the description of the beliefs.
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minimal possible one consistent with the path of the game, i.e. the high bid is equal to the
standing bid.

The proof that each buyer playing �∗ together with the specified beliefs constitute a
perfect Bayesian equilibrium consists of two parts. First, in Lemmas A.1 and A.2 we fix an
arbitrary state � and characterize the outcome of the continuation game G� starting from an
information set corresponding to �, when all buyers use the strategy �∗. Then in Lemmas
A.3–A.5 we show that, given the specified beliefs, no buyer can improve her payoff in G�
characterized in Lemmas A.1 and A.2 by a unilateral deviation from �∗. This implies that
strategy �∗ is sequentially rational: given the specified beliefs, it is optimal for each buyer
to use the strategy �∗ at every information set on and off the equilibrium path provided that
all other buyers also use the strategy �∗.

In fact, our proof relies only on Belief Rule 1 specifying the beliefs about high bids, but
not on Belief Rules 2 and 3. Thus, our result is, in fact, stronger. It shows that following �∗
is an ex post equilibrium. That is, it is optimal for the buyers to follow �∗ even if each of
them knew the array of other buyers’ valuations.

Let us introduce the necessary notation. Consider any point u on the grid, and let S�(u)

be the set of sellers whose standing bids in state � are u or less. Further, let Sh
�(u) be the

subset of S�(u) consisting of sellers who in state � have high bids strictly greater than u.
Similarly, let S0

�(u) be the subset of S�(u) consisting of sellers who in state � do not have
high bids strictly greater than u. Obviously, Sh

�(u) ∪ S0
�(u) = S�(u).

Next, let Da
�(u) be the set of all buyers whose valuations are no less than u + d and who

in state � do not hold any high bids equal to or greater than u+ d. A buyer in the set Da
�(u)

is willing to bid in any state of the continuation game where she does not hold a high bid and
the lowest standing bid does not exceed u. Set di(�, u) = 1 for buyer i ∈ Da

�(u). Also, let
D

p

�(u) be the set of buyers who hold high bids at sellers from Sh
�(u). For buyer i ∈ D

p

�(u),
let di(�, u) be the number of such high bids that i holds at �. For buyer i �∈ Da

�(u)∪D
p

�(u)

set di(�, u) = 0. Define AD�(u) = ∑
i di(�, u) ≡ #Da

�(u) + ∑
i∈D

p

�(u) di(�, u) (where
# denotes the cardinality of a set).

If all buyers follow �∗ in the continuation game G� and the lowest standing bid at the
terminal stage of this game is equal to u, then all high bids held at sellers Sh

�(u) in state
� will survive through the terminal stage, and a buyer from Da

�(u) will win one unit at a
seller from S0

�(u). Thus, intuitively, one can view AD�(u) as the minimal market demand
and di(�, u) as i’s individual demand at price u for units supplied by sellers S�(u). Let
gi(�, u) be the number of high bids held by buyer i in state � with sellers whose standing
bids are equal to u.

Finally, set v� = max{u|AD�(u − d) > #S�(u − d)} (or, equivalently, v� = max{u|#
Da

�(u − d) > #S0
�(u − d)} since

∑
i∈D

p

�(u) di(�, u) = #Sh
�(u − d)) if such u exists and

let v� = d̄ if otherwise (recall that d̄ is the highest point on the grid). Observe that v�
is the minimal market-clearing price at which the demand from the set of active buyers
Da

�(v�) does not exceed the available supply #S0
�(v�). Hence, if all buyers follow �∗ in

the continuation game, there would not be sufficient demand to drive the lowest standing
bid above v�. Indeed, if the lowest standing bid never exceeds v�, then the buyers who in
state � hold high bids exceeding v� are locked: they would not be active in the continuation
game and will end up buying from the sellers where they hold these bids. For the other
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buyers strictly wishing to buy at v�, i.e. those in Da
�(u), there would be sufficient supply

at this price because #Da
�(u)�#S0

�(v�).
These observations are at the core of the arguments in the following two lemmas which

characterize the outcome of the continuation game G� starting from the information set
corresponding to an arbitrarily fixed state �, when all buyers use the strategy �∗. To present
them, we need one more piece of notation. Say that a high bid in state � belongs to set Bd

�
if and only if it is strictly greater than v�, it is held at some seller j in S�(v�), and at the
information set where this high bid was submitted the standing bid of seller j was strictly
below v�. By definition, a submission of a bid from Bd

� constituted a deviation from �∗. As
we will show below, this deviation could be relevant on the continuation path of the bidding
game.

Lemma A.1. Consider any state �. If all buyers use �∗ in G�, then no trader will trade at
a price below v�. All sellers in S�(v� − d) will trade.

Proof. The proof is by contradiction. Suppose that the lowest standing bid vt at the terminal
stage T is strictly less than v�. By definition #Da

�(vt ) > #S0
�(vt ), so there is a buyer i ∈

Da
�(vt ) who is not a winner at any seller from S0

�(vt ). Then there are two possible cases.
Case (i): buyer i does not trade at all. But i’s valuation vi is such that vi �vt + d, so,
according to �∗, i would not pass at stage T . This contradicts the fact that T is a terminal
stage. Case (ii): buyer i trades with a seller j /∈ S0

�(vt ). But the high bid at seller j in state
� or her standing bid (if she did not have a high bid) was strictly above vt . Hence, in G� i

must have placed a high bid of at least vt + 2d at seller j , which contradicts the assumption
that all buyers use �∗ in G�.

The lowest standing bid cannot reach v� unless all sellers from S�(v� − d) receive at
least one bid in the continuation game. So, all sellers from S�(v� − d) will trade. �

Lemma A.2. Suppose that all buyers use �∗ in G�. Then the lowest standing bid at the
terminal stage will be equal to v�. New bids in G� will be placed only with sellers in S�(v�),
i.e. those whose standing bids in � do not exceed v�. Buyer i wins at least di(�, v�) units
held by these sellers and pays v� for each of them, except for the units of the sellers with
whom i holds high bids in Bd

�: i will purchase these units either at price v� or v� + d.

Proof. First, let us show that the lowest standing bid does not exceed v� at any information
set on the continuation path, up to and including the terminal stage. The argument is by
contradiction. Suppose that S ′ is the last information set where the lowest standing bid is
equal to v� and the terminal stage in not reached at S ′. As �∗ requires that buyers submit
bids only at sellers with the lowest standing bid, at information set S ′ the standing bids of
all but one sellers are at least v� + d and the standing bid at the remaining seller is equal to
v�. Since the next bid at this seller causes her standing bid to rise to v� + d, the high bid
at this seller must be strictly above v�.

Since the lowest standing bid at information set S ′ is equal to v�, no buyer submits a bid
exceeding v� + d at any information set preceding S ′ in G�. Therefore, any seller outside
the set S0

�(v�) has the same high bidder as in �. Consequently, only buyers in Da
�(v�) can

be high bidders at sellers from S0
�(v�). But by definition #S0

�(v�)�#Da
�(v�). Therefore,



240 M. Peters, S. Severinov / Journal of Economic Theory 130 (2006) 220–245

there is no buyer at information set S ′ whose valuation is at least v� + d and who does not
hold a high bid. So, no buyer could submit a bid v� + d at S ′ without deviating from �∗. In
combination with Lemma A.1 this implies that the lowest standing bid at the terminal stage
is v�.

Given that all buyers use the strategy �∗, this result immediately implies the following:
(i) a buyer with valuation strictly exceeding v� will trade; (ii) any high bid exceeding v�
in state � remains a high bid at the terminal stage. Therefore, buyer i will win at least
di(�, v�) units from sellers in S�(v�). Additionally, #S0

�(v�) − #Da
�(v�) units held by

sellers from S0
�(v�) will either be sold to buyers who have valuations equal to v� or who

in state � hold high bids equal to v� at these sellers, or may remain unsold if their reserve
prices are equal to v�; (iii) on the continuation path from �, new bids will be placed
only at sellers from S�(v�), because the standing bids of all other sellers exceed v� in
state �.

Finally, let us show that the standing bid of a seller in S�(v�) may reach v� +d only if in
state � this seller has a high bid which belongs to Bd

�. Suppose that buyer z’s holds a high
bid with seller sz belongs to Bd

� and in information set S1 the lowest standing bid and sz’s
standing bid are equal to v�. Then by definition of Bd

�, sz’s standing bid must have changed
after z has become a high bidder. So, if a buyer i ∈ Da

�(v�) is not a high bidder and moves
at information set S1, then i will bid with a positive probability at sz. If i does submit her
bid v� +d at seller sz, then z remains a high bidder and the standing bid increases to v� +d.
After this event, no trader bids at seller sz in the continuation because the lowest standing
bid never reaches v� + d .

On the contrary, suppose that in information set S1 controlled by buyer i buyer j holds a
high bid bj > v� with seller sj whose standing bid is v� and bj /∈ Bd

�. Then sj ’s standing
bid has reached this level before j has submitted her high bid bj . Therefore, strategy �∗
prescribes that at S1 buyer i chooses sj with zero probability. Since this is true at every
information set of G� where the lowest standing bid equals v� and on the continuation path
the lowest standing bid never exceeds v�, no buyer will ever bid at sj after j has submitted
her bid bj . �

Lemmas A.1 and A.2 imply that if all buyers follow �∗ starting from the initial state �0
in which no buyer has yet submitted a bid, then all trades will take place at price vm and all
buyers with valuations strictly above vm and all sellers with reserve prices below vm will
trade.

To complete the proof of the theorem, we need to show that no buyer can increase her/his
expected payoff in the continuation game G� by deviating from �∗ if all other buyers follow
�∗. This is done below in Lemmas A.3–A.5 which deal with the three possible cases in terms
of the effect of the buyer’s deviation on the lowest standing bid at the terminal stage: a buyer’s
deviation causes the lowest standing bid to remain below v�/rise above v�/does not change
it, respectively.

Note that a buyer typically does not know the state of the game (in particular, the profile of
the other buyers’valuations, their bidding histories, and the array of the high bids) precisely,
and hence is not certain about v� and the effect of her deviation on the lowest standing bid
at the terminal stage. But the arguments below show that for any v� and any effect of a
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buyer’s deviation on the lowest standing bid at the terminal stage, a deviation from �∗ does
not increase her payoff. Hence, even if a buyer had complete information regarding the state
of the game, it would still be optimal for her to follow �∗, provided that the other buyers
do so. Thus, our proof establishes a stronger result that following �∗ constitutes not only a
perfect Bayesian equilibrium, but an ex post equilibrium of the bidding game.

The proofs of Lemmas A.3 and A.4 are based on simple supply–demand arguments.
Specifically, we show that a buyer can only cause the lowest standing bid at the terminal
stage to fall below v� if she herself ends up not trading. Yet, by Lemma A.2, a buyer
following �∗ would trade at price v� for sure if her valuation was greater than v�. So a
deviation lowering the lowest standing bid is not profitable. Similarly, Lemma A.4 shows
that a buyer could cause the lowest standing bid to rise above v� only if she purchases at
least as many units as she would purchase had she followed �∗, and pays higher prices for
them.

Finally, Lemma A.5 shows that a deviation from �∗ which does not change the lowest
standing bid at the terminal stage cannot be profitable either. This lemma is immediate for
any buyer who has not deviated from �∗ by posting multiple high bids or bidding more
than one grid point above the standing bid before the path of the bidding game reaches
the state �. Such buyer gets the best possible outcome in the continuation game G� by
following �∗ rather than any alternative strategy that does not change the lowest standing
bid at the terminal stage. The proof of the lemma is significantly more complex if a buyer
has made one or both described deviations from �∗ prior to state �. This buyer may then
try to undo the consequences of his earlier deviations by deviating from �∗ in G� also. The
extra complexity of the proof is mainly due to the fact that one can no longer rely on simple
demand–supply arguments since the lowest standing bid remains the same whether a buyer
deviates from �∗ in G� or not. To prove Lemma A.5 we first show that a buyer cannot affect
the expected outcome unless she submits new high bids in G�, and then demonstrate that
submitting new high bid(s) is unprofitable because it causes both the number of units that
she wins and her expected aggregate payment to increase.

Lemma A.3. Suppose that in G� all buyers other than i follow �∗, buyer i has valuation
vi and follows some strategy � �= �∗, and the lowest standing bids at the terminal stage is
v s.t. v < v�. Then vi �v�, in state � buyer i does not hold any high bids greater or equal
to v�, and at the terminal stage i does not win any units at a price strictly below v�.

Proof. By hypothesis, the lowest standing bid at the terminal stage does not exceed v� −d.
So, any bidder j ∈ Da

�(v� − d), j �= i, must be a winning bidder and on the continuation
path j submits bids only with sellers from S0

�(v� − d). By definition, #S0
�(v� − d) <

#Da
�(v� − d). Therefore, i ∈ Da

�(v� − d), so vi �v� and i cannot trade with a seller from
S0

�(v� − d). Since all other sellers have high bids or standing bids of at least v�, i cannot
trade at a price below v�. �

Lemma A.4. Suppose that in G� all buyers other than i follow �∗, buyer i follows some
strategy � �= �∗, and the lowest standing bid at the terminal stage is v̂ satisfying v̂ > v�.
Then the number of units that i wins and her total payment is at least as large as the maximal
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possible number of units that he would win and the maximal possible total payment that he
would make if she follows �∗.

Proof. First, let us compute the minimal number of units that buyer i wins when she uses �.
Since the lowest standing bid at the terminal stage is v̂ and the buyers other than i follow �∗,

a buyer j �= i holds at most dj (�, v̂ − d) + ∑d̄
v=v̂ gj (�, v) high bids (recall that gj (�, v)

is the number of buyer j ’s high bids at � with sellers whose standing bids are equal to v).

To see this, note that dj (�, v̂ − d) + ∑d̄
v=v̂ gj (�, v) is at least as large as the number of

high bids of at least v̂ that j holds in state � and no less than 1 if vj � v̂.
Since #(S�(v) \ S�(v − d))�

∑
j gj (�, v), we conclude that after deviating to � i

wins at least #S�(v̂ − d) − ∑
j �=i dj (�, v̂ − d) + ∑d̄

v=v̂ gi(�, v) units, including at least
#S�(v̂ − d) − ∑

j �=i dj (�, v̂ − d)�0 units at sellers from S�(v̂ − d). The last expression
is nonnegative because #S�(v̂ − d)�AD�(v̂ − d).

Now suppose that buyer i follows �∗. Then Lemma A.2 implies that the number of
units that she wins at sellers from S�(v̂ − d) is at most #S�(v�) − ∑

j �=i dj (�, v�) +∑v̂−d
v=v�+d gi(�, v). She also wins

∑d̄
v=v̂ gi(�, v) units at sellers whose standing bids at �

are at least v̂.
When i follows � (�∗), buyers other than i do not place any bids at sellers whose standing

bids at � strictly exceed v̂ (v�). So, to establish the result it is sufficient to show that, when
buyer i follows �, she purchases at least as many units from sellers in S�(v̂ − d) as when
she follows �∗, i.e.

#S�(v̂ − d) −
∑
j �=i

dj (�, v̂ − d)

�#S�(v�) −
∑
j �=i

dj (�, v�) +
z=v̂−d∑
z=v�+d

gi(�, z). (1)

Inequality (1) holds trivially as equality when v� = v̂ − d. Otherwise, note that (1) is
implied by the following inequality:

#S�(v + d) − #S�(v)�gi(�, v + d) +
∑
j �=i

(dj (�, v + d) − dj (�, v)) (2)

To see that (2) holds, observe the following:

(i) #S�(v + d) − #S�(v�) is the number of sellers whose standing bids in � are exactly
equal to v + d.

(ii) gi(�, v + d) is the number of high bids that buyer i holds in � with sellers whose
standing bids at � are exactly equal to v + d .

(iii) dj (�, v + d) − dj (�, v) does not exceed the number of high bids that buyer j holds
in � with sellers whose standing bids at � are exactly equal to v + d. �
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Lemma A.5.19 Suppose that in G� all buyers other than i follow strategy �∗, buyer i

follows some strategy � �= �∗, and the outcome is such that the lowest standing bid at
the terminal stage is v�. Then i’s payoff is no higher than the payoff that she obtains by
following �∗.

Lemmas A.3–A.5 establish that there is no profitable deviation from �∗ and, thus, com-
plete the proof. �

Proof of Theorem 2. Consider a seller j with cost cj . We need to show that seller j ’s
expected payoff decreases in her reserve price p if p > cj when the number of traders is
sufficiently large. This will be achieved by comparing the expected payoffs that the seller
gets when she posts reserve prices equal to p and p − d.

By Theorem 1, when all buyers follow strategy �∗ the uniform trading price in the market
is equal to vm, the mth lowest element in v, the vector of the true buyers’ valuations and
the sellers’ reserve prices. Hence, the uniform trading price is equal to some pT if and
only if the following two conditions hold. First, the number of sellers and buyers whose
reserve prices and valuations are strictly below pT does not exceed m − 1. Second, the
number of sellers and buyers whose reserve prices and valuations do not exceed pT is at
least m.

Let us fix the strategies of sellers other than j by assuming that all of them set their
reserve prices equal to their true costs. Recall the following notation introduced above:
m1/m2/m3 is the number of buyers whose valuations are strictly below/ equal to/strictly
above p. Similarly, n1/n

′
2/n3 is the number of sellers, other than seller j , with costs strictly

below/equal to/strictly above p. Obviously, m1 +m2 +m3 = m and n1 +n′
2 +n3 = n−1.

The following two claims hold independently of the profile of strategies used by the sellers
other than j .

Claim 1. Suppose that if seller j sets reserve price p, then the trading price is pT s.t.
p < pT . Then the trading price will also be pT if seller j sets a different reserve price
p′ < pT . Seller j will trade in both cases.

Proof. By Theorem 1, the trading price is equal to vm which is not affected by a change in
j ’s reserve price p as long as p < vm. By Corollary 1, every seller who posts a price below
vm trades. �

Claim 2. Suppose that if seller j posts reserve price p, then the trading price is pT s.t.
p > pT . Then the trading price will also be pT if seller j posts reserve price p′′ > pT .
Seller j will fail to trade in both cases.

Proof. The trading price is equal to vm and is not affected by a change in j ’s reserve price
p as long as p > vm. By Corollary 1, any seller who posts a price above vm does not
trade. �

19 The proof of this lemma is available at http://microeconomics.ca/sergei_severinov/proofsinternetauc.pdf.
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We will say that price p is pivotal when the following condition holds: the trading price
is equal to p if seller j sets a reserve price equal to p, all sellers other than j post reserve
prices equal to their true costs and all buyers follow strategy �∗. Thus, p is pivotal if
vm(bm, cn

−j , p) = p. Claims 1 and 2 imply that seller j may get a different payoff from
setting her reserve price equal to p − d rather than p only if either p or p − d is pivotal.

Let P(�) (P(�|�)) denote the probability of event � (conditional on event �) and
E(y) E(y|�) denote the expectation (conditional expectation given event �) of the random
variable y. The result of the Theorem follows from the following four lemmas: 20

Lemma A.6. Seller j with cost cj obtains a higher expected payoff by setting reserve price
p − d rather than p, where p > cj , if the following condition holds:

P(p is pivotal, p − d is not pivotal, seller posting p fails to trade |cj )

�P(p is pivotal, p − d is pivotal, seller posting p trades |cj ). (3)

Lemma A.7. If all buyers follow strategy �∗ and all sellers other than j set reserve prices
equal to their true costs, then

P(p is pivotal, p − d is pivotal, seller posting p trades |cj )

�E

(
1

n′
2 + 1

|m1 + n1 = m − 1, m2 �n1, cj

)

×P(m1 + n1 = m − 1, m2 �n1|cj ). (4)

Lemma A.8. If all buyers follow strategy �∗ and all sellers other than j set reserve prices
equal to their true costs, then

P(p is pivotal, p − d is not pivotal, seller posting p fails to trade |cj )

�E

(
max

{
0,

n′
2 + 1 − m3 − min{0, m2 − n1}

n′
2 + 1

}

× |m1 + n1 < m − 1�m1 + n1 + m2 + n′
2, cj

)

×P(m1 + n1 < m − 1�m1 + n1 + m2 + n′
2|cj ). (5)

Lemma A.9. There exists N > 0, independent of p, such that the right-hand side of (4) is
less than the right-hand side of (5) if m = kn�N (where k is a positive constant).
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