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This paper explores the implications of costly informationacquisition in
a strategic communication model. We show that equilibrium decisions
based on a biased expert’s advice may be more precise than when infor-
mation is directly acquired by the decision maker, even if the expert is
not more efficient than the decision maker at acquiring information. This
result bears important implications for organization design. Communi-
cation by an expert to a decision maker may often outperform delegation
of the decision making authority to the expert, as well as centralization
by the decision maker of both information acquisition and decision mak-
ing authority.
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Strategic information transmission is one of the central topics in economics of infor-
mation. Starting from the seminal work of Crawford and Sobel(1982), this literature
highlights the limited scope of information transmission via cheap talk messages, which
generically leads to inaccurate or imprecise decisions (see Austen-Smith (1993), Gilli-
gan and Krehbiel (1987, 1989), Krishna and Morgan (2001), Wolinsky (2002), Battaglini
(2002), Ambrus and Takahashi (2008)). A common assumption in this literature is that
perfect information is exogenously given to the sender for free. The exceptions include
Austen-Smith (1994), Ottaviani (2000) and Ivanov (2010). In Austen-Smith (1994), the
sender may either acquire complete information or remain ignorant. In Ottaviani (2000),
the amount of information available to the expert is exogenous. In Ivanov (2010), infor-
mational structure can be selected costlessly by the decision-maker.

However, in reality information is typically obtained through time-consuming and
costly research effort.1 This being our point of departure, we study a model of strate-
gic communication in which information is costly and the decision to acquire it is taken
endogenously. In this setting, we demonstrate that the decision-maker can induce the
expert to acquire more information than the decision-makerwould acquire directly, even
when the expert and the decision-maker have the same technology of information ac-
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quisition. This result provides a foundation for our main finding: the decision-maker
can take more precise actions when the latter are based on theadvice of a biased expert
-provided that the bias is sufficiently small- rather than onthe decision-maker’s direct
information acquisition. This stands in contrast to the “common wisdom” of the extant
literature that the decisions based on the advice of a biasedexpert suffer from a loss of
precision.

To explain our results, let us first highlight the main features of our model. Initially,
both players – the decision-maker and the expert – are uninformed about the state of
the world and share a common prior. Information about the state of the world can be
acquired by performing “experiments” or “trials.” The costand precision of the acquired
information is measured by the number of the performed “trials.”2 This model of infor-
mation acquisition is simple and tractable, and fits well as adescription of a number of
real world situations such as aggregation of individual opinions from sincere voting, sur-
veys, or experiments. Moreover, as we explain below, the main driving forces identified
in our analysis are quite general and extend to other settings and different -discrete or
continuous- models of information acquisition.

In our baseline model, the expert acquires the information and then conveys a cheap-
talk message to the decision-maker, who then takes an action. We consider two scenar-
ios: overt information acquisition and covert informationacquisition.3 In the former, the
decision maker observes the quantity of information acquired by the expert, but not its
content. In the latter, the decision-maker observes neither the quantity nor the content of
the expert’s information. In both cases, we focus on the amount of information acquired
and credibly transmitted by the expert, which translates into the precision of the final
action taken by the decision-maker. We then compare the outcomes of these two com-
munication games against two alternatives: the first one is direct information acquisition
by the decision-maker, the second one is delegation to the expert of both information
acquisition and the choice of action.

The expert’s overinvestment in information acquisition isdriven by different forces in
the overt and covert games. In the overt game, the expert overinvests in order to avoid the
negative implications of the decision-maker reacting to the expert’s deviation at the in-
formation acquisition stage. The worst credible punishment that the decision-maker can
inflict on the expert in case of such a deviation -which of course provides the strongest
incentives for the information acquisition- is to ignore the expert’s message, unless the
expert acquired the “right” amount of information. In technical terms, a babbling equi-
librium is played off the equilibrium path.4

Moreover, the focus on off-path play of babbling equilibriais well-grounded and mo-
tivated in reality. Specifically, in a number of situations the decision-makers only heed
advice of experts whose qualifications or effort exceed the threshold set by the former.
Consider for example expert witnesses in legal trials. In the U.S., the Federal Rules of

2Our set-up is related to the Bernoulli-Uniform model of cheap talk analyzed by Morgan and Stocken (2008).
3We refer to these two scenarios as “overt game” and “covert game”, in the remainder of the paper.
4Ubiquitous in communication games, a babbling equilibria involves the decision-maker taking a decision unaffected

by the expert’s message, and, thus, the expert is indifferent among sending any message, and adopts a completely unin-
formative communication strategy.
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Evidence specify that testimony by an expert witness is acceptable only if it “...is the
product of sufficient facts or data,” and “is the product of reliable principles and methods
5”. This rule is sufficiently broad and allows the judge to tailor her threshold of accept-
ability to the particular case under consideration.6 If the judge finds that an expert has
not met this threshold, (s)he would typically disqualify the expert rather than allow a
limited testimony by the expert. Our results suggest that this legal procedure provides a
powerful incentive for information acquisition.

Other examples of what essentially is a threshold knowledgerule for admissibility
of an expert’s advice can be found in politics (parliamentary and congressional hearing
making use of expert’s advice), financial and consumer markets (financial advisors and
real estate agents have rating systems and certain customers will only deal with the agents
and advisors who have the highest rating category7), and academia (short reference letters
that do not describe in detail an academic’s research are usually disregarded by hiring and
tenure committees).

Furthermore, we also identify a larger parameter region in which our strict overinvest-
ment result holds in all but one Pareto efficient equilibria of the overt game. The only
exception is the expert’s ex-ante preferred equilibrium inwhich our result holds weakly:
the expert acquires and reveals exactly as much informationas the decision-maker would
acquire directly. This equilibrium outcome can be sustained playing the most informative
communication equilibrium both on and off path. In any otherPareto efficient equilib-
rium, the final decision is strictly more precise than the decision that would be made by
the decision maker acquiring information directly. This result does not rely on the threat
of babbling off-path.

In the covert game, the information acquisition investmentis unobservable, and hence
the decision-maker cannot punish the expert by tailoring her behavior to the actual
amount of information acquired. In fact, we establish that when searching for the most
informative and/or Pareto efficient equilibria and characterizing attainable levels of in-
formation acquisition, there is no loss of generality in focusing on equilibria in which
the expert does not communicate how much information he has acquired, as the latter
would be a non-verifiable “cheap-talk” message. So, the decision-maker interprets any
expert’s message under the belief that the latter has acquired the equilibrium amount of

5According to the Federal Rule of Evidence 702:
“A witness who is qualified as an expert by knowledge, skill, experience, training, or education may testify in the form

of an opinion or otherwise if: (a) the expert’s scientific, technical, or other specialized knowledge will help the trierof
fact to understand the evidence or to determine a fact in issue; (b) the testimony is based on sufficient facts or data; (c)
the testimony is the product of reliable principles and methods; and (d) the expert has reliably applied the principles and
methods to the facts of the case.”

6Berlin and Williams (2000) report that a case in which: “...The Illinois Supreme Court then pointed out that it is
the judge who must determine whether a potential expert witness is qualified to render opinions in a specific lawsuit”
They quote the opinion of said Court in the caseJones v. O’Young et al. as follows: “...The trial court has the discretion
to determine whether a physician is qualified and competent to state his opinion as an expert regarding the standard of
care. . . .By hearing evidence on the expert’s qualificationsand comparing the medical problem and the type of treatment in
the case to the experience and background of the expert, the trial court can examine whether the witness has demonstrated
a sufficient familiarity with the standard of care practicedin the case. . . [If the expert witness does not satisfy these
requirements], the trial court must disallow the expert’s testimony. . . . The requirements are a threshold beneath which
the plaintiff cannot fall without failing to sustain the allegations of his complaint.”

7J.D. Power and Associates system of rating for brokers provides one example.
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information even if that is not the case. We refer to this property as inflexibility of the
equilibrium language. Importantly, this inflexibility isan equilibrium propertyin our
model, not an assumption.

The inflexibility of the equilibrium language reduces the profitability of the expert’s
deviations in information acquisition. Specifically, the equilibrium language determines
the set of final decisions which the expert can induce the decision-maker to take. This set
of actions is particularly well tailored to the equilibriumamount of information. On the
other hand, by the inflexibility property, this set of feasible actions does not change with
the amount of information actually acquired by the expert, and hence it is less suitable
to the non-equilibrium quantity of information. This results in a lower precision of the
final action, hurting the expert when he deviates. This effect is less powerful than the off
path punishment in the overt game. Therefore, stronger conditions on the parameters are
required for the overinvestment to occur. As in the overt game, the strict overinvestment
result extends to all Pareto efficient equilibria of the covert game, except the equilibrium
preferred by the expert which is characterized by weak overinvestment.

Examples of fixed communication language are fairly common in economic environ-
ments. In particular, the language of financial advice is often standardized. Standard and
Poor’s Capital IQ equity analysts rank assets on a qualitative 5-point scale (Strong Sell,
Sell, Hold, Buy, Strong Buy). Similarly, consumer researchfirms, such as Consumer
Report, J.D. Powers and Associates and others, typically rate the quality of products on
a grid with a fixed number of points. Standardized restrictedcommunication protocols
can be found in public administration and in the military. Inthese examples the adopted
languages/grids, although endogenous, are apparently notsensitive to the amount of in-
formation possessed by the sender and may not be suitable when too much or too little
information is acquired.

Finally notice that in both the overt and covert games, the expert’s overinvestment in
information acquisition is not beneficial to the decision-maker by itself, but only when
the loss of the acquired information is transmission is not too large. In turn, the small
loss in transmission is possible only when the expert’s bias(the misalignment of interests
between the expert and the decision-maker) is small. Hence,the expert’s bias must be
sufficiently small for our results to hold.

Our analysis has significant implications for the theory of optimal organization. A
number of authors have cast doubt on the optimality of communication-based organiza-
tions vis-a-vis the alternatives. In particular, Dessein (2002) and Ottaviani (2000) have
shown that a communication-based organization, in which the principal’s decisions are
based on the advice of a biased expert with access to perfect and free information, is
dominated by delegation of the decision-making authority to the expert due to the loss
of information in transmission. Similar results in somewhat different frameworks have
been established by Aghion and Tirole (1997) and Gilligan and Krehbiel (1987).8

In contrast to these authors, our paper shows that, when information acquisition is

8Mitusch, and Strausz (2005) is an interesting contributionthat studies how and when adding a mediator can facilitate
communication between the decision-maker and an informed party, and thus a three level hierarchy can outperform a two-
level one.
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added to the set of organizational tasks, communication-based organization performs
better than either delegation to the expert of both activities or direct information acqui-
sition by the decision-maker. Thus, our results provide support for the prominent role of
information transmission between experts and decision-makers in organizations, which
has been postulated theoretically and confirmed empirically (see, e.g., Bolton and Dewa-
tripont,1994, and Garicano, 2000).

Viewed from another perspective, our paper suggests that itis optimal to divide the
tasks of information acquisition and decision-making in anorganization when the con-
flict of interests within the organization is small. Our strict overinvestment result implies
that such division of labor makes the searching player exertmore effort, while combining
both information acquisition and decision-making tasks inthe hands of a single party re-
sults in less search effort, and lower efficiency because of the positive externality on the
other(s). This is particularly relevant to partnerships. Empirically, it is in line with the
findings in Nelson (1988), who documented significant task differentiation among the
lawyers within law firms. Some deal mostly with information acquisition tasks (taking
depositions, research, gathering information from clients), while others focus on opera-
tional and decision-making roles such as developing case strategy, preparing and arguing
motions and negotiating with the opposing parties. While this division of labor within
large firms may reflect the distinction between partners and associates, this does not play
a role within smaller law firms.9

I. Literature on Information Acquisition.

The study of information acquisition has largely been unexplored in the strategic com-
munication literature, except for a few recent contributions. In particular, Eso and Szalay
(2010) consider a game in which an expert has the same preferences as the decision-
maker and is initially uninformed but can learn the exact realization of the state by paying
a fixed cost. The decision-maker commits ex-ante to a messageset (equivalently, action
set) that the expert can choose from. It is shown that restricting this message set can
induce the sender to acquire information for a larger range of costs. Similarly, Szalay
(2005) shows that restricting the set of actions available to the agent in the delegation
game can increases the latter’s incentive to acquire information. In both these papers, the
restriction on the set of messages (or actions) available tothe expert is chosen ex-ante
by the decision-maker, and the focus is on the normative question of which exogenously
fixed language maximizes information acquisition. Our model is different in a number
of significant aspects. First, unlike in those papers, in ourgame the language is endoge-
nous: it does not arise as a result of a commitment but rather emerges as a feature of
the equilibrium interaction between the players. Our focusis also different: we study
the positive question of how much information acquisition would occur in the commu-
nication game, as well as in other organizational forms. Other substantive differences

9Other studies of partnerships (e.g., Farrell and Scotchmer, 1988, Garicano and Santos, 2004, Levin and Tadelis,
2005) compare them to other organizational forms, but do notdelve into the matter of labor division within them. One
exception is Garicano and Hubbard (2008) who study the optimal distribution of lawyers across legal fields.
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between our model and those of Eso and Szalay (2010) and Szalay (2005) involve the
expert’s preferences and information acquisition technology: our expert is biased, he can
acquire any intermediate amount of information about the true state of the world, and his
information remains imprecise, except in the limit.

Another related contribution is Pei (2015) who considers covert costly information ac-
quisition and transmission. In his model, the expert first acquires an information partition
of the state space, and then observes the element of the acquired partition to which the
true state belongs. His key assumption is that a sender can acquire any coarsening of
a feasible partition at a lower cost. The implication of thispowerful assumption is that
all equilibria involve full revelation of the expert’s private information. Indeed, there is
no reason for the expert to purchase an information partition and then coarsen his infor-
mation in transmission if, instead, he can directly purchase the corresponding coarser
information partition at a lower cost and then transmit exactly what he has learned.
Our information acquisition technology -via experiments which improve the precision
of information- does not satisfy the assumption of Pei (2015).

Less closely related, Che and Kartik (2009) study acquisition and disclosure of veri-
fiable information. In their model, the expert has the same preferences as the decision-
maker but a different prior. Because of verifiability, an informed expert can only disclose
his signal or conceal it. These authors focus on the choice ofthe expert by the decision-
maker, and show that the latter would prefer an expert with a prior different from hers.
The divergence in prior beliefs, while stifling communication, provides stronger incen-
tives for the expert to put effort into information acquisition.

The rest of the paper is organized as follows. Section 2 introduces the model. Section
3 describes the main results for the overt and covert models.Section 4 derives the im-
plications for organization design. Section 5 concludes. All proofs are relegated to the
Appendix.

II. The Model

Our model of cheap talk with endogenous acquisition of costly information by the
expert-sender is a natural extension of the classic Crawford and Sobel (1982) model.
There are two players, the expert and the decision maker. Thedecision-maker’s payoff
is given by

(1) U R (y, θ) = − (y− θ)2 ,

whereθ is an unknown state of the world andy is the action taken by the decision-maker.
For simplicity, we assume thatθ is distributed uniformly over [0,1], but the main forces
driving our results are robust to different distributionalassumptions.

The expert’s payoff is given by

(2) U S (y, θ,b)− c (n) = − (y− θ − b)2− c (n) ,

where the biasb ≥ 0 measures the preference discrepancy between the expert and the
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decision-maker andc (n) is the cost of information acquisition when the expert performs
n trials as described below.

The game unfolds as follows. Initially, both the expert and the decision-maker have the
same common knowledge prior beliefs thatθ is distributed uniformly over [0,1]. The
expert then proceeds to acquire information by deciding on anumber of binary trials to
perform.10 Each trial results either in a success or a failure, with probability of success
equal to the trueθ . Conditional onθ , the realization of each trial is independent of other
trials. If the expert performsn trials, he incurs the costc (n) = cn and simultaneously
learns the realizations of all trials. Then he sends a message m ∈ M to the decision
maker, whereM is some message set. After receiving the message, the decision-maker
chooses an actiony ∈ [0,1].

For givenn andθ , the number of successesk is distributed according to the binomial
distribution:

f (k|n, θ) = n!
k! (n− k)!

θk (1− θ)n−k , for 0≤ k ≤ n.

Whenθ is uniformly distributed, the distribution ofk is also uniform:

Pr(k|n) =
� 1

0

n!
k! (n− k)!

θk (1− θ)n−k dθ = 1
n+ 1

.

Finally, the posterior distribution ofθ givenk successes inn trials is a Beta distribution
with parametersk+ 1 andn− k+ 1. Its density is given by:

f (θ |k,n) = (n+ 1)!
k! (n− k)!

θk (1− θ)n−k , if 0 ≤ θ ≤ 1.

The corresponding posterior expectation ofθ is E [θ |k,n] = k+ 1
n+ 2

.

We will distinguish between two cases in the analysis. In theovert game, prior to
choosing an actiony the decision-maker observes the number of trialsn performed by
the expert. In thecovert game, n is private unverifiable information of the expert.

A. The Overt Game

A pure strategy Perfect Bayesian Equilibrium of the overt game is described by a
tuple

�
n, {Pn′}n′∈N∪{0}, {y (Pn′)}n′∈N∪{0}

�
, wheren is the expert’s number of trials; Pn′ ≡�

pn′
1 , ..., pn′

#Pn′

�
is the partition of the set of the expert’s types

�
0,1, ...,n′

�
describing the

information communicated by the expert aftern′ trials; and{y (Pn′)} ≡
�

yn′
p1
, ..., yn′

p#Pn′

�

is the decision maker’s action profile corresponding to partition Pn′ .

10We envision a “batch” model in which the expert decides once and for all on the size of the batch (number of trials)
to acquire. Changing the size of the batch along the road is too costly e.g., requires a high fixed cost.
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According to this definition, if the expert performsn′ trials with k successes, then he
sends a message to the decision maker that the elementpi of the communication parti-
tion Pn′ has occurred, wherek ∈ pi .11 A babbling partitioncontains a single element.
In a fully separating partition,each type is an element of the partition. Correspond-
ingly, yn′

pi
∈ [0,1] is the action which the decision-maker takes after receiving a message

corresponding to the elementpi of the partitionPn′ .
The following conditions must hold in an equilibrium:

(i) Action profiley(Pn′) is sequentially rational for alln′ i.e. yn′
pi

maximizes the decision-
maker’s expected payoff given that the expert’s typek is in pi :

(3) yn′
pi
∈ arg max

y

� 1

0
U R(y, θ) f (θ |k ∈ pi ,n

′)dθ for all pi ∈ Pn′ ;

(ii) For everyn′ ∈ N ∪ {0}, the partitionPn′ is incentive compatible i.e., for anyk ∈
{0,1, ...,n′} andpi ∈ Pn′ such thatk ∈ pi , we have:
(4)� 1

0
U S
�

yn′
pi
, θ,b

�
f
�
θ |k,n′

�
dθ ≥

� 1

0
U S(yn′

q , θ, b) f
�
θ |k,n′

�
dθ, for all q ∈ Pn′ .

(iii) n maximizes the expert’s expected payoff given{Pn′}n′∈N∪{0} and{y (Pn′)}n′∈N∪{0}.
That is, ifk ∈ pn′(k), then we have:

(5) n ∈ arg max
n′∈N∪{0}

n′�

k=0

	� 1

0
U S
�

yn′

pn′ (k)
, θ,b

�
f
�
θ |k,n′

�
dθ × Pr

�
k|n′

�

− c(n′).

Our next step is to characterize the decision-maker’s optimal action rule and the incen-
tive compatible (IC) partitions.

LEMMA 1: The decision-maker’s sequentially rational action yn′
pi

is equal to her poste-
rior expectation ofθ , given n′ trials and the element pi of the partition Pn′ communicated
by the expert:

(6) yn′
pi
= E

�
θ |pi , n

′� = 1
|pi |

�

k∈pi

k+ 1

n′ + 2
,

where|pi | denotes the cardinality of pi .

LEMMA 2: A communication partition Pn′ is incentive compatible if and only if each
element of it consists of consecutive types and the cardinalities |pi | and|pi+1| of any two

11We do not specify explicitly which message(s)m ∈ M signals an elementpi of the partitionPn′ . Any arbitrary
partition of the message spaceM into #Pn′ setsM1, ...,M#Pn′ s.t.∪iMi = M andMi ∩M j = ∅ for i �= j will do.

With any such convention, every message uniquely maps to an element of partitionPn′ , for anyn′.
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of its consecutive elements pi and pi+1 satisfy the following:

(7) 4b
�
n′ + 2

�
− 2≤ |pi+1| − |pi | ≤ 4b

�
n′ + 2

�
+ 2.

Condition (7) is an incentive constraint for boundary typesto truthfully announce the
corresponding element of the partition. The first inequality guarantees that the action
associated withpi+1 is sufficiently large that the highest type inpi prefers to announce
pi rather thanpi+1. The second inequality guarantees that the action associated with pi

is sufficiently small that the lowest type inpi+1 prefers to announcespi+1 rather thanpi .
Note that (7) is conceptually equivalent to the arbitrage condition in Crawford and

Sobel (1982), which guarantees that boundary types in an IC partition are indifferent
between two consecutive elements of it. In fact, it is easy toshow that asn′ becomes
large, any IC partition of our model converges to an equilibrium partition of Crawford
and Sobel (1982). The main difference is that in our model theexpert is not perfectly
informed, and the type space is finite. Because of the latter,our boundary types are typ-
ically not exactly indifferent between adjacent elements of the partition and also, unlike
in Crawford and Sobel (1982), fully separating communication partitions can be incen-
tive compatible. In fact, by Lemma 2 a fully separating partition is incentive compatible
if and only if b

�
n′ + 2

�
≤ 1/2. If b ≥ 1/4, then the only IC communication partition is

a babbling one.
Because we will use Pareto-efficiency as a refinement criterion, let us now highlight

the notions of Pareto-ranking of IC communication partitions and Pareto-efficiency of the
equilibria. For anyn′, IC partition{Pn′} and sequentially rational action profiley(Pn′),
the expert’s and the decision-maker’s ex-ante expected payoffs (derived on page 32 in
the Appendix) are respectively given by:

(8) E
�
− (y(Pn′)− θ)2



 Pn′] − b2− cn′ and E
�
− (y(Pn′)− θ)2 |Pn′

�
.

At the interim stage (i.e., after the number of trialsn′ has been chosen but the number of
successes has not yet been realized),cn′ is a sunk cost for the expert. So (8) implies that
at the interim stage the preferences of the players are aligned: they both prefer a lower

E
��

yn′
pi
− θ

�2 |Pn′

�
, the residual variance ofθ under{Pn′}. Hence, all IC communication

partitions forn′ trials can be Pareto-ranked according to the residual variance ofθ , or,
equivalently, according to theprecisionof the decision, 1/E

�
(y(Pn′)− θ)2 |Pn′

�
.12

Next, we say that equilibrium
�
n′, {Pn}n∈N∪{0}, {y (Pn)}n∈N∪{0}

�
is ex-ante Pareto ef-

ficient if there is no other equilibrium in which the expert’s and thedecision-maker’s
ex-ante payoffs are greater, with at least one of them strictly greater. In contrast to the
interim stage, at the ex-ante stage the preferences of the players are not aligned because
the investment costcn′ has not been incurred yet. This creates a tension between the

12A complete characterization of Pareto efficient IC partitions is provided in the online Appendix available at
www.severinov.com/iasupplement.pdf.
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common interest of the players to maximize the precision of the decision, and the fact
that the cost of information acquisition is borne entirely by the expert.

Note that ex-ante Pareto efficiency requires a Pareto efficient IC partition to be used
in equilibrium. However, this does not preclude the playersfrom coordinating on a less
informative communication partition off the equilibrium path, after a non-equilibrium
number of trials.

B. The Covert Game

In the covert game -unlike in the overt game- the decision maker does not observe
the amount of information acquired by the expert. Formally,this implies that a Perfect
Bayesian Equilibrium of the covert game must additionally specify the decision-maker’s
beliefs about the expert’s information acquisition choice. The other elements are the
same in both games.

We will focus on the equilibria in which the expert plays a pure strategy at the in-
formation acquisition stage. In principle, the expert may try to signal to the decision-
maker information how many trials he has actually performed, via his cheap talk mes-
sage. However, the next Lemma shows that restricting attention to equilibria in which
the expert does not signal how much information he has acquired is without loss of gen-
erality. More precisely, it does not affect the set of equilibrium outcomes and the scope
of information acquisition, which is our primary interest.

LEMMA 3: Any outcome supported in a Perfect Bayesian Equilibrium of the covert
game in which the expert follows a pure strategy in the choiceof the number of trials can
be supported in a Perfect Bayesian Equilibrium in which the decision-maker’s beliefs
about the number of trials do not vary with the expert’s message.

The intuition behind the Lemma is based on the following observation: if the expert
could affect the decision-maker’s beliefs about the numberof performed trials, he would
have a larger set of deviations available than if he could not. Specifically, if the expert
could signal the number of performed trials he would have twoclasses of available de-
viations. The first one involves the expert misleading the decision-maker by performing
a non-equilibrium number of trials but still sending an equilibrium message, signalling
that he has performed the equilibrium number of trials. The second class of deviations
involves the expert performing a non-equilibrium number oftrials and signalling to the
decision-maker that some (not necessarily true) non-equilibrium number of trials has
been performed.

In contrast, if an expert cannot affect the decision-maker’s beliefs about the number
of trials, then an equilibrium has to be immune only to the deviations of the first class
described above. So any equilibrium in which the expert can affect the decision-maker’s
beliefs about the number of trials remains an equilibrium when the expert cannot affect
those beliefs.

Relying on Lemma 3, we will focus on equilibria in which, irrespectively of the ex-
pert’s message, the decision-maker believes that the expert has performed the equilibrium
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number of trials with probability 1. Then a pure-strategy Perfect Bayesian Equilibrium
of the covert game is represented by a triple(n∗, Pn∗, y (Pn∗)), wheren∗ is the number of
trials, Pn∗ is a communication partition, andy (Pn∗) ≡ {yn∗

pi
}pi∈Pn∗ is the decision-maker’s

action profile. As in the overt game, the equilibrium partition Pn∗ must be incentive com-
patible and the action profiley (Pn∗) must be sequentially rational i.e.,Pn∗ andy (Pn∗)

have to satisfy (3) and (4), respectively.
The equilibrium number of trials must maximize the expert’sexpected payoff given

Pn∗ andy (Pn∗) i.e.,

(9) n∗ ∈ arg max
n′∈N∪{0}

n′�

k=0

�
max

yp∈y(Pn∗)

� 1

0
U S
�
yp, θ,b

�
f
�
θ ; k,n′

�
dθ

�
Pr
�
k; n′

�
− c(n′).

The latter condition reflects the specific structure of the covert game. To understand it,
consider the expected payoff that the expert gets by deviating at the information acquisi-
tion stage to somen′, n′ �= n∗. In this case, the communication game will still proceed
on the basis of the equilibrium partitionPn∗ and so, whatever message the expert sends
at the communication stage, he will only be able to induce oneof the actions in the equi-
librium action profiley (Pn∗). Then, given somek successes inn′ trials, the expert will
choose to induce actiony ∈ y (Pn∗) that maximizes his payoff, as reflected in (9).

The nature of the optimality condition (9) has important implications for the covert
game. In particular, the following trade-off emerges: a more informative communication
partition leads to a more precise decision. However, a higher informativeness of the
information partition makes it more profitable for the expert to deviate at the information
acquisition stage.

The covert game, as the overt one, has multiple equilibria. We will focus on the set
of Pareto-efficient ones. The definition of Pareto-efficiency of equilibria given in the
previous subsection for the overt game applies to the covertgame as well.

C. Direct Information Acquisition

One of the central results in the literature on cheap talk is that the decisions based on
information communicated by a biased expert are less precise, and hence less efficient,
than the decisions made by a decision maker with direct access to the information. We
inquire below whether this result continues to hold when information acquisition is costly
and endogenous.

To address this question, we need to consider the benchmark problem of a decision-
maker acting without an expert and acquiring information byherself. Such a decision-
maker chooses a number of trialsn incurring the costc (n) = cn. She then observes
the number of successesk ∈ {0, ...,n}, and finally takes an actiony∗k,n. By the same
argument contained in Lemma 1, the optimal action given the information acquired is:
y∗k,n = E [θ |k] = (k+ 1)/ (n+ 2). This implies:
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LEMMA 4: The expected utility of the decision-maker who performs n trials is equal
to:

(10) E
�
−
�
y∗k,n − θ

�2 |n
�
− cn= − 1

6(n+ 2)
− cn.

The decision maker’s optimal number of trials n∗ (c) is given by:

n∗ (c) = max
�

n : − 1
6(n+ 2)

− cn−
	
− 1

6(n− 1+ 2)
− c(n− 1)



> 0

�

=
�

1
2

��
1+ 2

3c
− 3

��
.(11)

Combining (10) and (11) yields a closed form expression for the decision-maker’s
maximal attainable expected payoff:
(12)

E
�
−
�
y∗k,n∗(c) − θ

�2 |n∗
�
−cn∗ (c) = − 1

6
�

1
2

��
1+ 2

3c + 1
��−c

�
1

2

��
1+ 2

3c
− 3

��
.

Finally, we observe that if instead information acquisition and decision making were

both delegated to a biased expert, he would maximizeE
�
−
�
y∗k,n − θ

�2 |n
�
−b2− cn. It

is immediate that the expert would also choosen∗ (c) trials.

III. Overinvestment and Decision Precision

This section provides the main result of the paper that the decisions based on the advice
of a biased expert can be more precise than the decisions based on information directly
acquired by the decision maker. This is driven by a combination of two factors: the
expert’s overinvestment in information acquisition, and the smallness of the information
loss in transmission.

To understand the intuition behind this result, note the following basic misalignment
between the players’ preferences. Since the cost of information acquisition is borne
by the expert, ceteris paribus the decision-maker prefers that the expert acquires more
information than under direct information acquisition. Incontrast, the expert never wants
to acquire more information than in the benchmark direct-acquisition case, and will want
to acquire less information if some of it is lost in transmission.

We show that, despite the misalignment of the preferences, the principal is able to in-
duce the expert to overinvest in information acquisition. The exact way in which this
occurs is different in the overt and covert game. However, a common element in these
two games is that the expert’s information remains fairly coarse even under overinvest-
ment. This helps the expert’s incentives to transmit it fully, which, in turn, increases her
incentives to acquire information.
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It is worth noting that our overinvestment results do not rely on misalignment of pref-
erences between the two players: they hold also when the expert is unbiased. This stands
in contrast with the work Che and Kartik (2009) on the acquisition and transmission of
verifiable information.

A. Decision Precision in the Overt Game

The observability of the number of trials in the overt game implies that the decision-
maker can and will react to the amount of information acquired by the expert. As we
show below, this reaction can induce the expert to overinvest in information acquisition.
We will start by considering equilibria in which the decision-maker uses the strongest
credible punishment - playing a “babbling” communication equilibrium- if the expert
deviates in information acquisition. We then demonstrate that such a strong threat is not
necessary for overinvestment.

In a babbling equilibrium of the communication game, the decision-maker ignores the
expert’s message as uninformative. An intuitive interpretation of this reaction by the
decision maker is that a deviation by the expert in the information acquisition stage may
naturally cause the decision-maker to lose any trust in the expert.13

To understand how the threat of babbling can lead to an overinvestment, consider the
limit case of an unbiased expert. Suppose the decision makerwants to induce him to
performn∗(c)+1 trials. If the expert does so, a fully separating equilibrium is played in
the continuation, and the decision-maker uses the most precise action rule givenn∗(c)+1
trials. This is incentive compatible under zero bias. If anyother amount of information
is acquired, a babbling equilibrium is played in the communication game: the decision-
maker ignores the expert’s message and takes an “uninformed” action y = 1

2 equal to the
ex-ante expectation ofθ . Thus, the expert faces a choice between two alternatives: do not
perform any trials and save the cost of information acquisition, but face an “uninformed”
action y = 1

2; alternatively, incur the cost(n∗(c) + 1)c followed by the most precise
action rule. The second alternative is very close to the expert’s absolute payoff maximum
attained by performingn∗(c) trials and fully revealing their outcome: the difference isthe
cost of one additional trial,c, which is partly compensated by higher decision precision.
In contrast, the payoff difference between the first alternative and the expert’s absolute
payoff maximum is significant whenc is small and hencen∗(c) is sufficiently large. So
the expert prefer to overinvest and performn∗(c)+1 trials. By continuity, this result also
holds when the expert has a sufficiently small bias.

The next Proposition is based on this logic and identifies sufficient conditions for the
existence of an equilibrium with overinvestment and a negligible loss of information in
transmission.14

13Selection of a babbling equilibria to improve the decision maker’s welfare is reminiscent of the constructions in
the sequential cheap talk models of Aumann and Hart (2003) and Krishna and Morgan (2004). But, unlike in those
constructions, we do not invoke babbling equilibria on the equilibrium path.

14For expositional simplicity we have assumed that the information acquisition cost is the same for the expert and
the decision maker. The result of Proposition 1 holds a fortiori if the expert is more efficient than the decision maker at
acquiring information.
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PROPOSITION 1: If b ≤
��

1+ 2
3c + 3

�−1
and c≤ 5−

√
17

48 , then the overt game has

an equilibrium in which the final decision is strictly more precise than in the case of
direct information acquisition by the decision maker.

The sufficient conditions of this Proposition guarantee full information transmission
on equilibrium path. However, this is not necessary for the result of the Proposition to
hold. Rather what is required is that the loss of informationin communication should
not be too large.

To illustrate this, we have numerically computed the equilibrium of the overt game
with the most precise decision rule, and compared its residual varianceE

�
(yn − θ)2 |n

�

with the residual variance in the benchmark direct information acquisition case in (12).
We have performed these computations forb ∈ [0, 0.25], c ∈ [0,0.027] andn ≤ 100.15

The results are presented in Figure 1(b). Figure (1a) depicts the region where the suf-
ficient conditions of Proposition 1 hold. Taken together, these figures show that for a
broad range of parameter values the precision of the decision is higher in the communi-
cation game than under direct information acquisition, even if some information is lost in
communication. The overinvestment in information acquisition more than compensates
for this loss.
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FIGURE 1. DECISION PRECISION IN THE OVERT GAME

Note: (1a) In the white region, the sufficient conditions in Proposition 1 are satisfied. (1b) In the white region the decision
in the most informative equilibrium of the overt game is strictly more precise than with direct information acquisition. In
the grey region it is as precise. In the black region it is strictly less precise.

15This is the relevant parameter range, since forb ≥ 0.25 the unique equilibrium of the communication game is
uninformative, and forc> 0.027 the unique solution of the decision maker’s optimization problem isn∗ = 0.
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The next Proposition extends the scope of Proposition 1 by establishing that its result
holds in all Pareto efficient equilibria of the communication game, except for the equi-
librium preferred by the expert. In the latter, the decisionprecision is the same as under
direct information acquisition.16

PROPOSITION 2: If b ≤
��

1+ 2
3c + 1

�−1
, then in the Pareto-efficient equilibrium of

the overt game with the highest ex-ante expected payoff for the expert, the final deci-
sion has the same precision as the decision based on direct information acquisition by
the decision-maker. This equilibrium can be supported whenthe most informative com-
munication equilibrium is played off the path. In any other Pareto-efficient equilibrium
of the overt game, the decision is strictly more precise thanunder direct information
acquisition.

To prove Proposition 2 we first show that full revelation of information is incentive
compatible when the expert performsn∗(c) trials. This implies that in the equilibrium
with the highest ex-ante payoff for the expert, the latter performs exactlyn∗(c) trials
followed by full revelation. Indeed, recall that at the ex-ante stage the players’ pref-
erences are aligned and they both would like to maximize the decision precision. So,
after n∗(c) trials and full revelation the expert obtains the same expected payoff as the
decision-maker optimally acquiring information herself,modulo a constantb2. Suppose
the expert deviates and chooses a different numbern′′ of trials. Then, in any continua-
tion equilibrium his payoff decreases by at least the same amount as the payoff of the
decision maker who switches fromn∗(c) trials to n′′ in direct information acquisition.
Becausen∗(c) is optimal for the decision-maker in the latter scenario, italso constitutes
an equilibrium choice for the expert.17 This equilibrium is Pareto-efficient, because the
expert attains his highest ex-ante expected payoff. By definition, in any other Pareto-
efficient equilibrium the decision maker achieves a higher ex-ante expected payoff, i.e.
the decision is strictly more precise.

B. Decision Precision in the Covert Game

In this section we show that equilibria with overinvestmentand higher decision pre-
cision also exist in the covert game, albeit under more restrictive conditions than in the
overt game, because in the covert game the decision-maker does not observe the amount
of information acquired by the expert and hence the latter can make unobservable devia-
tions in the choice of the number of trials.

The logic behind this result is more subtle than in the overt game. Consider the simple
case of an unbiased expert, so that full revelation is alwayspossible on the equilibrium

16Focusing on Pareto efficient equilibria is standard in the literature on signaling games.
17Notice that this equilibrium outcome can be achieved for different selections of the communication partition to be

played off-path. In particular, for the case in which the most informative communication partition is played for any
number of trials acquired.
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path. Relying on Lemma 3, we restrict consideration to equilibria in which the decision-
maker’s beliefs about the number of trials performed do not change with the expert’s
message. This inflexibility ultimately implies that the setof actions which the expert can
induce is not tailored well to the information acquired after a non-equilibrium number
of trials, and hence the decision-precision after a deviation in information acquisition
is lower than on the equilibrium path. As we show below, this factor outweighs any
potential expert’s cost savings from a deviation to a lower number of trials, when the
equilibrium number of trials does not exceedn∗ by too much. This logic is robust to the
presence of a small bias. The following simple example illustrates this.

EXAMPLE 1: Suppose that c= 1/35 and b ≤ 17/210. By Lemma 4, n∗ = 0 i.e.,
the decision maker would not acquire any information, receiving a payoff of−1/12 .
However, the covert game has an equilibrium in which the expert performs one trial
and reveals its outcome, inducing action y= 1/3 after a failure and y= 2/3 after a
success. The associated expected payoffs of the expert and of the decision maker are
−1/18−b2−c and−1/18, respectively. So, the decision precision is higher than under
direct information acquisition, and the decision-maker’sexpected payoff increases by 50
percent. Let us check that the expert has no profitable deviations. After any deviation, he
can only induce one of the equilibrium actions, y= 1/3 or y = 2/3. If he deviates to
zero trials, then because of his upwards bias b> 0, he would induce y= 2/3 obtaining
expected utility of−1/9+b/3−b2. This is less than−1/18−b2− c when b≤ 17/210
and c= 1/35, so this deviation is unprofitable. Showing that a deviationto n > 1 is
unprofitable is straightforward and is omitted.

Example 1 deals with the simplest case in which the only downward deviation in in-
formation acquisition involves performing no trials. But our line of argument works
more generally. Indeed, in Example 2 below the decision-maker acquiring information
directly performs one trial, but in an equilibrium of the covert game the expert performs
two trials. In this case a downward deviation by an expert to asingle trial still generates
a non-trivial, binary information partition, while the equilibrium action profile consists
of three elements and hence offers a finer choice to the agent.Yet, this action profile is
not well-suited to the off-equilibrium information partition, and a deviation to one trial
causes a loss of decision precision which is not compensatedby an economy of informa-
tion acquisition cost.

EXAMPLE 2: Suppose that b≤ 1/24 and 1/72 < c < 1/48. By Lemma 4, the
decision-maker would acquire one trial and get a payoff−1/18−c . However, the covert
game has an equilibrium in which the expert performs two trials and truthfully reveals
the outcome, inducing actions1/4, 1/2, and 3/4 after zero, one, and two successes,
respectively. The expected payoffs of the expert and of the decision maker are−1/24−
b2− 2c and−1/24, respectively, with the utility gain to the decision-maker between 40
percent and 45 percent depending on the cost.

By Lemma 2 truthful revelation of the trial outcomes is incentive compatible for the
expert. Let us check that there are no profitable deviations at the information acquisition
stage. Any message after such deviation can only induce one of the equilibrium actions,
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1/4, 1/2, or 3/4. If the expert deviates to zero trials, then her payoffs fromthese actions
are−1/12− (b+ 1/4)2, − 1

12 − b2, and− 1
12 − b2, respectively. Since b2 ≤ 1

24, action
1
2 gives the highest payoff, which is nevertheless smaller than his putative equilibrium
payoff−1/24− b2 − 2c because c< 1/48. So this deviation is unprofitable. Next,
consider a deviation to n= 1. In this case, the number of successes k could be either 0
or 1. The computations provided in the Appendix show that theexpert prefers to action
1/4 when k= 0, and action3/4 when k= 1. So, after n= 1 the expert’s expected

payoff equals Prob(k = 0|n = 1)
�
−2
� 1

0

�
1
4 − θ − b

�2
(1− θ)dθ

�
+ Prob(k = 1|n =

1)
�
−2
� 1

0

�
3
4 − θ − b

�2
θdθ

�
− c =−3/48− b2 − c which is less than his putative

equilibrium payoff−1/24− b2− 2c. Finally, showing that the expert would not deviate
to n> 2 is straightforward and is therefore omitted.

The following Proposition generalizes the above examples and identifies sufficient
conditions for strict overinvestment and higher decision precision in the communication
game.

PROPOSITION 3: If 1
6(n+2)(n+3) < c < 1

6(n+1)(n+3) −max
�
0,
�

1
3b
�
In=0,

�
24b−1

96

�
In=1,

�
30b−1

450

�
In=2,

�
30b−1

360

�
In=3,

�
63b−2

735

�
In=4

�
for some integer n18, and b≤ 1

4(n+3) , then the

covert game has an equilibrium in which the final decision is strictly more precise than
the decision based on direct information acquisition.

The conditions of Proposition 3 are represented graphically in Figure 2a. Observe that
an interval of costs for which these conditions hold, provided that the biasb is sufficiently
small, is followed by an interval of slightly higher costs for which these conditions never
hold, which in turn is followed by an interval of higher costsfor which these condition
holds again under small bias, and so on. This pattern reflectsthe following regularity.

Let H(n) be an interval of cost values for whichn is the optimal number of trials under

direct information acquisition. Note thatH(n) =
�

1
6(n+2)(n+3) ,

1
6(n+1)(n+2)

�
, and so the

cost axis can be divided into adjacent intervalsH(n) corresponding to different values
of n. For eachn, the second condition in Proposition 3 identifies a subinterval L (n)
of H (n) where the result holds.L (n) constitutes the lower part ofH (n) for everyn.
Hence, the intervalsL(n) are not adjacent.

When the unit costc lies inL(n) and the bias is not too large, the covert communication
game admits an equilibrium in which the expert runsn+ 1 trials and fully reveals their
outcome.L (n) is a strict subset ofH (n) because, ifc is too close to the upper bound of
H (n), the expert prefers to save some cost and deviate ton trials. The condition on the
bias i.e.,b ≤ 1/ [4 (n+ 3)], guarantees that, if the expert performsn+ 1 trials, he then
fully reveals their realization in the communication game.

18The symbolIn=k in the inequality denotes the indicator function taking value one ifn = k, and zero otherwise. It is
easy to check that this interval is non-empty for everyn.
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FIGURE 2. DECISION PRECISION IN THE COVERT GAME

Note: (2a) In the white region, the sufficient conditions in Proposition 3 hold. (2b) In the white region, the decision
in the most informative equilibrium of the covert game is strictly more precise than under optimal direct information
acquisition. In the grey region the precision is the same in the most informative equilibrium of the covert game and under
optimal direct information acquisition. In the black region, the decision under optimal direct information is more precise
than in the most informative equilibrium of the covert game.

Since the conditions of Proposition 3 are stronger than necessary, we have numerically
identified the whole region of the parameter space where the precision of the decision
maker’s action in the most informative equilibrium of the covert game is strictly higher
than under optimal direct information acquisition. The results are presented in Figure 2b.

We conclude the analysis of the covert game with a result analogous to Proposition 2
for the overt game.

PROPOSITION 4: If b ≤
�
2
�

1+ 2
3c + 2

�−1
, then in the Pareto-efficient equilibrium

of the covert game with the highest ex-ante expected payoff for the expert, the final deci-
sion has the same precision as the decision based on direct information acquisition. In
every other Pareto efficient equilibrium of the covert game the decision is strictly more
precise.

The proof of Proposition 4 establishes that in his preferredequilibrium the expert per-
forms n∗ (c) trials and fully reveals their outcome. The key step of the proof shows
that the expert cannot benefit by deviating fromn∗ at the information acquisition stage,
because any such deviation yields him a loss exceeding the loss incurred by the decision-
maker making the same deviation in direct information acquisition. The second part of
the Proposition follows because in any other Pareto efficient equilibrium the decision-
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maker’s payoff, and hence the precision of the decision, must be higher.

IV. Organization Design

Our results have important implications for organization design. Specifically, consider
an organization that has to gather information and take a decision under uncertainty. We
will focus on two cases which differ in terms of organizational objectives, depending on
whose interests are served by the organization. The first case deals with an organization
that serves primarily the interests of its principal. Here,we consider three possible or-
ganizational structures. Undercentralization, the principal acquires information directly
and takes the decision. Formally, it corresponds to our benchmark case of direct informa-
tion acquisition by the decision-maker. Beyond a literal interpretation, we may consider
this organizational structure to describe situations in which the principal hires, directs and
closely supervises its employees. Underdelegation, the principal delegates both infor-
mation acquisition and decision-making to an agent. Finally, in acommunication-based
organization, the principal delegates the task of information acquisition to her agent but
keeps the decision-making authority.

Under centralization/direct information acquisition, the principal’s expected payoff is
given by the following:

(13) E
�
−
�
y∗ − θ

�2 |n∗(c)
�
− cn∗(c),

whereyn∗
k = (k+ 1) / [n∗ (c)+ 2] is the principal’s optimal decision rule wherek is the

number of successes observed inn∗ (c) trials.
The optimization problem solved by the agent under delegation is similar to the prin-

cipal’s problem under centralization. In both cases, the party acquiring information op-
timally conductsn∗(c) trials given by (11). But under delegation, the optimal decision
rule for the agent isyn∗

k (b) = (k+ 1) / [n∗ (c)+ 2] + b. So, the principal’s expected
payoff under delegation is:

(14) E
�
−
�
y∗ − θ

�2 |n∗ (c)
�
− b2.

The comparison between centralization and delegation is straightforward. By delegating
decision to the agent, the principal trades off saving the information acquisition cost
cn∗(c), for a biased decision with lossb2.

Communication can be modelled either via overt or covert game analyzed above, de-
pending on whether the principal observes the number of trials performed by the agent
or not. In either game, the principal’s expected payoff is determined by the numbern of
trials and equilibrium communication partitionP, and is equal to:

(15) E
�
− (ȳ− θ)2 |P

�
,

where ȳ = E(θ |pi ) is the optimal decision when the expert’s message signals element
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pi of the partitionP.
Inspection of expressions (13)-(15) shows that both centralization and delegation are

dominated by a communication equilibrium with partitionP if E
�
− (ȳ− θ)2 |P

�
≥

E
�
− (y∗ − θ)2 |n∗ (c)

�
, or, in our terminology, if the decision in the communication

equilibrium is at least as precise as in the benchmark case ofdirect information acquisi-
tion. Hence, Propositions 2 and 4 imply the following Corollary.

COROLLARY 1: (a) If b ≤
��

1+ 2
3c + 1

�−1
, then the principal strictly prefers any

Pareto efficient equilibrium of the overt game to centralization and delegation.

(b) If b ≤
�
2
�

1+ 2
3c + 2

�−1
, then the principal strictly prefers any Pareto efficient

equilibrium of the covert game to centralization and delegation.

The comparison between communication and centralization in Corollary 1 is per-
formed under the assumption that the agent and the principalhave the same costc in
information acquisition. However, the comparison betweencommunication and delega-
tion does not rely on it, since the expert bears the cost of information acquisition in both
organizations.

Next, to highlight the benefit that the principal gets from communication-based organi-
zation, we have computed and plotted in Figure 3 the change inthe decision-maker’s ex-
pected payoff obtained by switching from direct information acquisition to a communication-
based organization, in an equilibrium with the minimal overinvestment. The former pay-
off is given by equation(12), while the latter corresponds to the communication equilib-
rium in which the expert performsn∗ (c)+1 trials and reveals their outcomes (Sufficient
conditions for the existence of this equilibrium in the overt and covert game are provided
in Propositions 1 and 3). The actual gain for the decision-maker is larger than the one
represented on the graph in equilibria larger overinvestment19.

The lower curve on the graph represents the gain from higher precision of the decision.
The latter varies from a few percentage points for low valuesof the costc, to around 25
percent whenc is close to the top of the admissible range. The higher curve on the graph
shows that the gain is much larger, and varies from 40 percentto 52 percent, when the
beneficial effect of transferring the cost from the decision-maker under direct information
acquisition to the expert under communication is also accounted for.

As our second application, we consider an organization whose objective function is
the sum of payoffs of both parties who are affected by the decision. While we continue
to refer to them as principal and agent for ease of comparison, in the present case it
is more natural to think about the organization as a partnership. Thus, the total payoff
of the partnership is given by 2E

�
− (ȳ(P)− θ)2 |P

�
− b2 − cn, whereP is incentive

compatible information partition,̄y(P) is the action profile underP, andn is the number
of trials performed andb is bias which in this case reflects the non-congruence of interests
between the partners. Note that a non-congruence of interests between partners is a

19We have plotted the two curves in Figure 3 for the same range ofcosts as Figures. As stated in Propositions 1 and 3,
an equilibrium with of the overt and covert game respectively, in which the expert performsn∗(c) + 1 trials and reveals
their outcomes, exists only in subsets of this range. These subsets are illustrated in Figures 1(a) and 2(a), respectively.
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FIGURE 3. PRINCIPAL’ S GAIN

Note: The lower line represents the proportional increase in the decision precision when switching fromn∗ (c) trials
directly purchased by the principal ton∗ (c) + 1 trials purchased by the expert and followed by full revelation of their
outcome. The higher line represents the proportional increase in the principal’s payoff when taking into account both the
increase in the decision precision and the cost savings.

common phenomenon (multiple lawsuits between partners attest to that), so the biasb
and the fact that the partner who chooses the action maximizes her own payoff rather
than the total payoff above are a natural reflection of such misalignment.

Although a partnership can be organized in many different ways, our analysis will
be limited to the organizational forms described above. Thus, under centralizationone
partner takes upon himself both information acquisition and decision-making. Formally,
under partnership’s objective function, centralization is payoff-equivalent, to both our
benchmark case of direct information acquisition by the decision -maker and to the dele-
gation. Underspecialization or division of labor,the tasks of information acquisition and
decision making are split between the partners. This organizational form can be mod-
elled either via the overt or the covert game, depending on whether the decision-maker
observes the information acquisition choice by the other partner or not.

Our next result shoes that, under the sufficient conditions of Propositions 1 and 3, the
outcome of specialization/division of labor (i.e. at leastone equilibrium outcome of both
the overt and covert game) dominates centralization.



22 AMERICAN ECONOMIC JOURNAL MONTH YEAR

PROPOSITION 5: (a) If b ≤
��

1+ 2
3c + 3

�−1
and c≤ 5−

√
17

48 , division of labor in the

overt game yields a higher payoff to the partnership than centralization in at least one
equilibrium.
(b) For any integer n, if b≤ 1

4(n+3) , and
1

6(n+2)(n+3) < c < 1
6(n+1)(n+3) − max

�
0,
�

1
3b
�
In=0,

�
24b−1

96

�
In=1,

�
30b−1

450

�
In=2,

�
30b−1

360

�
In=3,

�
63b−2

735

�
In=4

�
, division of labor in the covert game yields a higher payoff to

the partnership than centralization in at least one equilibrium.

Since ours is not a complete study of partnership mechanisms, we do not claim to
provide a characterization of the optimal organizational form for a partnership. However,
the last result suggest that a partnership involved in information acquisition and decision-
making in an uncertain environment would benefit from specialization and division of
labor between the partners. The equilibria identified in Propositions 1 and 3 not only
yield a significant utility gain to the decision-maker, but also generate a surplus that
would be sufficient to compensate the acquirer of information for the cost and effort that
he expends in this activity.

V. Conclusions

We have developed a simple, yet intuitive model of costly endogenous information
acquisition with strategic communication of this information. In this context, we have
shown that decisions based on a biased expert’s advice may bemore precise than optimal
choices based on direct information acquisition, even if the expert is not more efficient
than the decision maker at acquiring information. This result is important for organiza-
tion design, as it implies that (i) under certain conditionscommunication-based organi-
zations outperform delegation and centralization, and (ii) under certain conditions part-
nerships are better off dividing the information acquisition and decision making among
the partners, rather than centralizing these tasks to a single partner. In this respect, our
paper contributes to the literature that employs a strategic communication framework to
study optimal allocation of authority in the presence of incomplete information.

We have derived our results for a specific information acquisition model, but we would
like to highlight that the main forces behind our results arerobust to more general sta-
tistical structures. In the overt game, the use of a crediblethreat of the worst off-path
punishment to induce overinvestment would also be effective in incentivizing the ex-
pert in different settings with either continuous or discrete information. As for the covert
game, consider any communication model in which the sender’s information is fixed. We
know from Crawford and Sobel (1982) that unless the sender isunbiased, the set of mes-
sages used on the equilibrium path is discrete (up to outcomeequivalence), and depends
on the amount of information held by the expert. When considering covert informa-
tion acquisition, an expert deviating from the equilibriuminformation acquisition choice
would be penalized by the inflexibility of equilibrium language. However, to conclude
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that overinvestment is beneficial for the decision maker, itwould need to be the case that
(i) the fixed language effect is sufficiently strong relativeto the information acquisition
cost to deter deviation at the information acquisition stage and (ii) that the information
transmission loss is sufficiently small not to offset the equilibrium overinvestment20. We
leave this issue for further research.

A number of other interesting questions can be addressed in the framework of our
model. First, suppose that the decision-maker was able to subsidize the expert’s infor-
mation acquisition cost. How would that affect the amount ofinformation acquired and
the precision of the decision? Second, how would the outcomeof the communication
game be affected if the expert acquired the information covertly but had an option to
verifiably disclose the amount of information that he acquired? Would a decision maker
prefer knowing the amount of information acquired by an expert, when she could not
inspect its content? As shown by Austen-Smith (1994), this issue is far from being trans-
parent. We leave these and other questions for future research.

MATHEMATICAL APPENDIX

Proof of Lemma 1. The decision maker choosesyn′
pi

so as to maximize

−
� 1

0

�
yn′

pi
− θ

�2
f
�
θ |k ∈ pi ,n

′�dθ.

Taking the first-order condition, we obtainyn′
pi
=
� 1

0 θ f
�
θ |k ∈ pi ,n′

�
dθ = E

�
θ |pi ,n′

�
.

Simplifying:

E
�
θ |pi ,n

′� = E
�
E
�
θ |k,n′

�
|k ∈ pi

�
=
�

k∈pi

E
�
θ |k,n′

� f
�
k; n′

�
�

k∈pi
f (k; n′) =

1
|pi |

�

k∈pi

k+ 1
n′ + 2

becauseE
�
θ |k,n′

�
= k+1

n′+2, and f
�
k; n′

�
=
� 1

0 f
�
k; n′, θ

�
dθ = n′!

k! (n′ − k)!

� 1
0 θ

k (1− θ)n′−k dθ =
n′!

k! (n′ − k)!
k!(n′−k)!
(n′+1)! = 1

n′+1.

Proof of Lemma 2. First, we show that the incentive compatibility constraint (4) can
be rewritten as

−
�

yn′
pi
− yn′

q

� ��
yn′

pi
+ yn′

q

�
− 2E

�
θ/k,n′

�
− 2b

�
≥ 0 for all q ∈ Pn′ .

20We would like to thank an anonymous referee for this observation.
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For this, note the following:

� 1

0
U S
�

yn′
pi
, θ, b

�
f
�
θ ; k,n′

�
dθ ≥

� 1

0
U S(yn′

q , θ, b) f
�
θ ; k, n′

�
dθ

−
� 1

0

��
yn′

pi
− θ − b

�2
−
�

yn′
q − θ − b

�2
�

f
�
θ ; k, n′

�
dθ ≥ 0

−
� 1

0

��
yn′

pi

�2
+ (θ + b)2− 2yn′

pi
(θ + b)−

�
yn′

q

�2
− (θ + b)2+ 2yn′

q (θ + b)

�
f
�
θ ; k,n′

�
dθ ≥ 0

−
� 1

0

��
yn′

pi

�2
−
�

yn′
q

�2
− 2

�
yn′

pi
− yn′

q

�
(θ + b)

�
f
�
θ ; k,n′

�
dθ ≥ 0

−
�

yn′
pi
− yn′

q

� ��
yn′

pi
+ yn′

q

�
− 2E

�
θ/k,n′

�
− 2b

�
≥ 0

Next, we prove that in any pure-strategy equilibrium of the communication subgame,
each element of the equilibrium partition is connected. Suppose by contradiction that
there exists an equilibrium where at least one element of thepartition is not connected.
Then, there exists at least a triple of types

�
k, k′, k′′

�
such that:k < k′′ < k′, k andk′

belong to the same element of the partition, which we denote by pa, andk′′ belongs to a
different element, which we denote bypb. Let ya andyb be the equilibrium actions as-
sociated topa andpb respectively. By incentive compatibility, the following inequalities
must hold:

(yb− ya)

	
ya + yb−

2(k+ 1)
n′ + 2

− 2b



≥ 0

(yb− ya)

�
ya + yb −

2
�
k′ + 1

�

n′ + 2
− 2b

�
≥ 0

(ya − yb)

�
ya + yb −

2
�
k′′ + 1

�

n′ + 2
− 2b

�
≥ 0

Because the first two expressions are positive, thenya + yb −
2(k+ 1)

n+ 2
− 2b and

ya+ yb−
2
�
k′ + 1

�

n+ 2
− 2b have the same sign. But then, alsoya+ yb−

2
�
k′′ + 1

�

n+ 2
− 2b

has the same sign, becausek < k′′ < k. And hence, the last expression is negative: A
contradiction.

Next, we prove that incentive compatibility implies expression (7). Let k be the ex-
pert’s type. Denote byy the equilibrium action associated tok, and by y any other
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equilibrium action. The incentive compatibility constraint is:

(A1) ( y− y)

	
 y+ y− 2(k+ 1)

n′ + 2
− 2b



≥ 0.

First, we rule out the possibility that a typek deviates by inducing an equilibrium action

 y larger thany. This deviation is unprofitable if and only if

(A2)  y+ y− 2(k+ 1)
n′ + 2

− 2b ≥ 0.

Because the expression is increasing in y and decreasing ink, it immediately follows that
the tightest incentive compatibility constraints concernthe highest typek in any element
pi of the equilibrium partition, entertaining the possibility of deviating and inducing the
equilibrium action y associated topi+1, the element of the partition immediately to the
right of p.

Hence, we now consider such constraints. The explicit expression fory and ỹ are:

y = 1
|pi |

�
k+ 1
n′ + 2

+ k− 1+ 1
n′ + 2

+ ...+ k− (|pi | − 1)+ 1
n′ + 2

�
= 2k− |pi | + 3

2(n′ + 2)

 y = 1
|pi+1|

�
k+ 1+ 1

n′ + 2
+ k+ 2+ 1

n′ + 2
+ ...+ k+ |pi+1| + 1

n′ + 2

�
= 2k+ |pi+1| + 3

2(n′ + 2)

Hence, condition (A2) simplifies as:

2k+ |pi+1| + 3

2(n′ + 2)
+ 2k− |pi | + 3

2(n′ + 2)
−

2
�
k+ 1

�

n′ + 2
− 2b ≥ 0,

or,

(A3) |pi+1| ≥ |pi | + 4b (n+ 2)− 2.

Proceeding in the same fashion, we prove that when y < y, the tightest incentive com-
patibility constraints concern the lowest typek in any elementpi of the equilibrium
partition, entertaining the possibility of deviating and inducing the equilibrium action
 y associated topi−1, the element of the partition immediately to the left ofpi . Again,
letting j be the cardinality ofpi , andz be the cardinality ofpi−1, we obtain

y = 1
|pi |

�
k+ 1
n′ + 2

+ k+ 1+ 1
n′ + 2

+ ...+ k+ |pi | − 1+ 1
n′ + 2

�
= 2k+ |pi | + 1

2(n′ + 2)
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 y = 1
|pi−1|

�
k− 1+ 1

n′ + 2
+ k− 2+ 1

n′ + 2
+ ...+ k− |pi−1| + 1

n′ + 2

�
= 2k− |pi−1| + 1

2(n′ + 2)

Hence, condition (A2) simplifies as:

2k− |pi−1| + 1
2(n′ + 2)

+ 2k+ |pi | + 1
2(n′ + 2)

−
2
�
k+ 1

�

n′ + 2
− 2b ≤ 0

which implies

(A4) |pi | ≤ |pi−1| + 4b (n+ 2)+ 2.

Derivation of Expression (8). For anyn′, consider the expert’s and the decision-
maker’s expected payoffs associated to IC partition{Pn′}, assuming that the decision-
maker plays her sequentially rational strategy, as described by Lemma 1:

n′�

k=0

	� 1

0
U S
�

yn′

pn′ (k)
, θ,b

�
f
�
θ ; k,n′

�
dθ × Pr

�
k; n′

�

− c(n′)(A5)

n′�

k=0

	� 1

0
U R

�
yn′

pn′ (k)
, θ,b

�
f
�
θ ; k,n′

�
dθ × Pr

�
k; n′

�

(A6)

Let the operatorE [.|Pn′ ] denote the expectation with respect toθ andk conditional on
the number of experimentsn′, and the associated partitionPn′ . Then, using the fact that,
by (6), E

�
y(Pn′)|Pn′

�
= E [θ |Pn′], we can rewrite the expert’s expected payoff in (A5)

as follows:

E
�
− (y(Pn′)− θ − b)2 |Pn′

�
− cn′ = E

�
− (y(Pn′)− θ)2+ 2b (y(Pn′)− θ) |Pn′

�
− b2− cn′

= E
�
− (y(Pn′)− θ)2



 Pn′ ] − b2− cn′,

Further, the decision-maker’s expected payoffs in (A6) canbe rewritten as:

E
�
− (y(Pn′)− θ)2 |Pn′

�

Proof of Lemma 3: Consider an equilibriumE1 = (n1,m1(n, k), B1(.), σ 1) in which
the expert performsn1 trials, and follows message strategym1(n, k), wheren is the
number of trials andk is the number of successes, the decision-maker forms beliefs
B1(.) : M �→ 
({(n, k)|n, k ∈ N ,n ≥ k}) and follows action-choice strategyσ 1(.) :
B1 �→ 
([0,1]). 21 Note that the decision maker’s beliefsB1(.) is a mapping from

21In this proof, we need to use a more canonical definition of perfect Bayesian equilibrium, not relying on partitions.
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the set of expert’s messagesM into the set of probability distributions
({(n, k)|n, k ∈
N ,n ≥ k}), reflecting the fact that in the covert game the decision makerhas to form
beliefs not only about the number of successes but also aboutthe number of experiments
performed by the expert.

LetMe = {m1(n1, k)|k = 0,1, ...,n1} be the set of messages sent on the equilibrium
path with a positive probability. ThenB1

|N(m) puts probability 1 onn1 for all m ∈Me.

Next, fix some arbitrary̆m ∈Me and consider modified belief̂B(.) and modified strategy
σ̂ (.) such that for anym ∈ Me, B̂(m) = B1(m) and σ̂ (m) = σ 1(m), while for any
m ∈M \Me, B̂(m) = B1(m̆) andσ̂ (m) = σ 1(m̆). Hence,B̂(.) puts probability 1 on
n1 for all m ∈M.

Now consider a putative equilibrium̂E = (n1,m1(n, k), B̂(.), σ̂ (.)) in which the expert
performsn1 trials and follows message strategym1(n, k), and the decision-maker uses
belief ruleB̂(.) and strategy profilêσ(.). With the decision-maker’s belief rulêB(.) in Ê,
no expert’s message can change the decision-maker’s beliefs about the number of trials.

Furthermore,Ê does constitute a perfect Bayesian equilibrium becauseE1 is a perfect
Bayesian equilibrium, and botĥE andE1 prescribe the same behavior and beliefs on
the equilibrium path, with the only difference between thembeing in the beliefs off the
equilibrium path i.e., after a messagem ∈ M \Me: after such messagêE prescribes
beliefs B̂(m) = B1(m̆), while E1 prescribes beliefsB1(m). However, since a message
m̆ is also available to a deviating expert inE1 but does not lead to a profitable deviation,
there is no profitable deviation for an expert inÊ. So,Ê is a perfect Bayesian equilibrium.
�

Proof of Lemma 4: First, recall thaty∗k = E [θ |k] = (k + 1)/(n + 2). Using this
expression below we obtain:
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�
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�
y∗k − θ
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= − 1
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Proof of Proposition 1. We prove that there exists an equilibrium of the overt infor-
mation acquisition game in which the expert runsn∗ (c)+ 1 trials and fully reveals their
realizations. Clearly, this equilibrium implies a decision precision higher than the bench-
mark of direct information acquisition by the decision maker. The result then follows
because either this equilibrium is Pareto-efficient, or there exists another equilibrium
which Pareto-dominates it, in which the payoff of the decision-maker, i.e. the decision
precision, is even higher.

The proof proceeds as follows. First, we find the maximal number of trials n (c) such
that, under a given investment costc, the utility that the expert obtains by conducting
 n (c) trials and fully revealing their realizations to the decision maker is higher than the
utility from running any other number of trials and playing the babbling equilibrium.
Formally, n (c) is the highest integer that satisfies

− 1
6(n+ 2)

− b2− cn≥ − 1
12
− b2.

Further, from Lemma 2 it follows that!n (b) ≡
"

1
2b − 2

#
is the maximal number of trials

for which full revelation in the communication game is incentive compatible. Hence, it
is an equilibrium for the expert to runn∗(c)+ 1 trials and to fully reveal the information
to the decision maker whenever the following condition holds:

(A7) n∗(c)+ 1≤ max{!n (b) , n (c)}.

The conditionn∗ (c)+1≤ n (c) is satisfied if
�

2+3c
12c −

3
2+1≤ 1

12c−2, i.e.,c ≤ 5−
√

17
48 ,

whereas the conditionn∗ (c) + 1 ≤ !n (b) is satisfied if
�

2+3c
12c −

3
2 + 1 ≤ 1

2b − 2, or

b ≤
��

1+ 2
3c + 3

�−1
.

If !n (b) ≥ n∗ (c) + 1 and n (c) ≥ n∗ (c) + 1, then there exists an equilibrium of the
overt information acquisition game in which the expert runsn∗ (c) + 1 trials and fully
reveals their realizations, while the babbling equilibrium is played in any subgame in

whichn′ �= n trials are run. The decision maker’s utilityE
�
−
�
yp − θ − b

�2 |Pn

�
in this

equilibrium is−1/[6(n∗+1+2)] which is strictly larger than the decision maker’s utility
−1/[6(n∗ + 2)] if she directly acquired information. Q.E.D.

Proof of Proposition 2. We start by proving that under the condition of the theorem,
there is an equilibrium outcome in whichn∗ (c) trials are acquired and full revelation
occurs. This must be the outcome with the highest possible ex-ante expected utility for
the expert, by definition ofn∗ (c). In this outcome, the decision precision is the same
as in direct information acquisition by the decision maker.The result then follows from
the observation that the expert’s preferred equilibrium isby construction Pareto-efficient.
Hence, in any other Pareto-efficient equilibrium, the ex-ante utility of the decision maker,
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which coincides with the precision of the decision, must be weakly larger than in this
equilibrium.

First, notice that the conditionb ≤
��

1+ 2
3c + 1

�−1
implies that

"
1
2b − 2

#
≥
��

2+3c
12c − 1.5

�
,

that is!n (b) ≥ n∗(c). This in turn implies that fully revealing the outcome ofn∗ (c)
trials is incentive compatible. Next, consider deviationsat the information acquisi-
tion stage. In equilibrium, the expert’s expected utility,E

�
U S (y∗, θ,b) |n

�
− c (n) is

equal toE
�
U R (y∗, θ) |n

�
− c (n) − b2, the expected payoff of a decision maker who

directly conductsn∗(c) trials, minusb2. Now suppose the expert deviates, and pur-
chasesn′ trials and some communication equilibrium is played in the ensuing commu-

nication subgame. Given this communication partitionPn′ , E
�
−
�
yn′

pi
− θ − b

�2 |Pn′

�
=

E
�
−
�
yn′

pi
− θ

�2 |Pn′

�
− b2. If the partition played after the deviation is fully separating,

then the difference between equilibrium payoff and deviation payoff is equal to the pay-
off difference that the decision maker would receive in the single agent decision problem
if he purchasedn′ trials rather thann∗ (c). This payoff difference is negative, by defini-
tion of n∗ (c). If some information loss occurs, the deviation gain is strictly smaller than
the payoff difference that the decision maker would receivein the single agent decision

problem becauseE
�
−
�
yn′

pi
− θ

�2 |Pn′

�
< E

�
U R (y∗, θ) |n′

�
and again it is negative by

the definition ofn∗ (c). Q.E.D.

Proof of Proposition 3. We start from the observation that for any integerl , n∗ (c) = l
for 1

6(l+2)(l+3) < c < 1
6(l+1)(l+2) , hence also for anyc in the interval required by the

Proposition. The proof will show that if the conditions in the proposition hold, then in
equilibrium the expert acquiresn∗ (c)+ 1= l + 1 trials and fully reveals their outcome.

First, by Lemma 2, full revelation of the outcome ofl + 1 is incentive compatible for
b ≤ 1

2(l+3) , hence it is incentive compatible forb ≤ 1
4(l+3) .

Next, we establish that the expert has no incentive to acquire a number of trials dif-
ferent froml + 1. The expert’s expected payoff from performingl + 1 trials and fully
revealing the outcome is equal toW (l + 1) = − 1

6(l+3) − b2.

Because 1
6(l+2)(l+3) < c < 1

6(l+1)(l+2) andb ≤ 1
4(l+3) , the proof of Proposition 5 —

interchangingn∗ with l + 1 —- implies that deviating froml + 1 trials to runn > l + 1
trials is not profitable.

By concavity ofW, W(l+1)−W(l− j )
j+1 > W(l+1)−W(l−1)

2 . Hence, requiring thatc < W(l+1)−W(l−1)
2 =

1
6(l+1)(l+3) deters all deviations froml + 1 to l − j, j = 1, ..., l .

Finally, a deviation tol trials is not profitable for the expert ifc < W (l + 1)− Ŵ (l ),
whereŴ (·) was defined in the proof of Proposition 5. The rest of the proofestablishes
that for l > 4, 1

6(l+1)(l+3) < W (l + 1) − Ŵ (l ), hence requiring thatc < 1
6(l+1)(l+3)

guarantees that the deviation tol trials is not profitable. Also, it establishes that for

l < 4, the value of 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
is at most1

3b if l = 0, 24b−1
96 if

l = 1,30b−1
450 if l = 2, 30b−1

360 if l = 3, and 63b−2
735 if l = 4, hence the condition in the

proposition guarantees thatc < min
$

1
6(l+1)(l+3) ,

�
W (l + 1)− Ŵ (l )

�%
.
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To calculateW (l + 1)− Ŵ (l ), we need to computêW (l ). Denoting byyj the action
in the set

�
0, 1

l+3, ...,
l+1
l+3

�
preferred by an expert who observedj successes inl trials, we

obtain:

Ŵ (l ) = 1
l + 1

l�

j=0

Ŵ
�

j, l ; yj
�
= −

l�

j=0

1
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(yj − b)2+ 2
l�
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3
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3
−

l�
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yj − b
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�
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j + 1
l + 2

�
.

Hence,

W (l + 1)− Ŵ (l ) = − 1
6(l + 3)

− b2+ 1
3
+

l�

j=0

yj − b

l + 1

�
yj − b− 2

j + 1
l + 2

�

= 2k+ 5
6(l + 3)

− b2+
l�

j=0

yj − b

l + 1

�
yj − b− 2

j + 1
l + 2

�
.

Next, we characterize the expert’s preferred actionyj , for j = 0, ..., l . First, we

establish thatyj ∈
$

j+1
l+3 ,

j+2
l+3

%
. The payoff of typej is maximized by actionj+1

l+2 + b >
j+1
l+3 , hence the actionj+1

l+3 is preferred to any smaller action. Also,j+1
l+2 <

j+2
l+3 , hence

the fact that in equilibrium the type whose payoff is maximized by j+2
l+3 + b is willing

to truthfully reveal his type guarantees that after a deviation to l trials the actionj+2
l+3 is

preferred to any larger action.

Second, we observe that a sender whose payoff is maximized byj+1
l+2 + b will choose

to induce actionj+1
l+3 rather thanj+2

l+3 if and only if 2b+ 2 j−l
(l+2)(l+3) > 0 and this quantity

is increasing inj , hence for any bias such thatb ≤ 1
4(l+3) , we can find a threshold

J =
"
−b (n+ 2) (n+ 3)+ n

2

#
≤ n

2 such that typesj ≤ J prefer action j+1
n+3 and types

j > J prefer actionj+2
n+3. Notice thatJ = −1 denotes the case where all typesj prefer

action j+2
n+3.

Then, the differenceW (l + 1)− Ŵ (l ) can be rewritten as

W (l + 1)− Ŵ (l )

= 2k+ 5
6(l + 3)

− b2+ 2
J�

j=0

j+1
l+3 − b

l + 1

�
j+1
l+3 − b

2
− j + 1

l + 2

�
+ 2

l�

j=J+1

j+2
l+3 − b

l + 1

�
j+2
l+3 − b

2
− j + 1

l + 2

�

=
2J2+ 2J

�
12b− l + 10bk+ 2bk2+ 1

�
+ 2+ 12b+ l − 2bk+ l 2− 8bk2− 2bk3

2(l + 1) (l + 2) (l + 3)2
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It is easy to check that 1
6(l+2)(l+3) is smaller than the above expression for anyJ, hence

the range forc identified in the statement of the proposition is nonempty.
Next, we consider the following difference:

W (l + 1)− Ŵ (l )− 1

6(l + 1) (l + 3)

=
2J2+ 2J

�
12b− l + 10bk+ 2bk2+ 1

�
+ 2+ 12b+ l − 2bk+ l 2− 8bk2− 2bk3

2(l + 1) (l + 2) (l + 3)2

− 1
6(l + 1) (l + 3)

=
3J2+ J

�
36b− 3k+ 30bk+ 6bk2+ 3

�
+ 18b− l − 3bk+ l 2− 12bk2− 3bk3

3(l + 3)2 (l + 1) (l + 2)

The denominator is positive. The numerator is a quadratic expression inJ. For l ≥ 8,

this quadratic is positive for anyl and anyb hence min
$

1
6(l+1)(l+3) ,

�
W (l + 1)− Ŵ (l )

�%
=

1
6(l+1)(l+3) . Using the definition ofJ, we have that:

Forl = 0, J = −1 andW (l + 1)−Ŵ (l ) = 1−6b
18 , hence 1

6(l+1)(l+3)−
�
W (l + 1)− Ŵ (l )

�
=

b
3.

For l = 1, if b ≤ 1
24, J = 0 and 1

6(l+1)(l+3) −
�
W (l + 1)− Ŵ (l )

�
= 0. If instead

1
24 < b < 1

16, thenJ = −1 and 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
= 24b−1

48 .

For l = 2, if b ≤ 1
30 J = 0 and 1

6(l+1)(l+3)−
�
W (l + 1)− Ŵ (l )

�
< 0. Forb ∈ ( 1

30,
1
20],

J = 0 and 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
= 30b−1

450 .

For l = 3, if b ≤ 1
60 J = 1 and 1

6(l+1)(l+3)−
�
W (l + 1)− Ŵ (l )

�
< 0. Forb ∈ [ 1

60,
1
24],

J = 0 and 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
= 30b−1

320 .

For l = 4, if b ≤ 1
42 J = 1 and 1

6(l+1)(l+3)−
�
W (l + 1)− Ŵ (l )

�
< 0. Forb ∈ [ 1

42,
1
28],

J = 0 and 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
= 63b−2

735 .

For l = 5, if b ≤ 1
112, J = 2. If b ∈

�
1

112 < b ≤ 3
112

�
, J = 1. If b ∈ [ 3

112 < b ≤ 5
112],

J = 0. In each of these three cases, 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
< 0.

For l = 6, from the expression forJ one can see that eitherJ = 1 or J = 2. In both

cases, 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
< 0.

For l = 7, from the expression forJ one can see that eitherJ = 1 or J = 2 or J = 3.

In all these cases, 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
< 0.
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We can therefore conclude that forl > 4, 1
6(l+1)(l+3) < W (l + 1)−Ŵ (l ), hence requir-

ing thatc< 1
6(l+1)(l+3) guarantees that the deviation tol trials is not profitable. Moreover,

we have established that forl < 4, the value of 1
6(l+1)(l+3) −

�
W (l + 1)− Ŵ (l )

�
is at

most1
3b if l = 0, 24b−1

96 if l = 1,30b−1
450 if l = 2, 30b−1

360 if l = 3, and63b−2
735 if l = 4, hence the

condition in the proposition guarantees thatc < min
$

1
6(l+1)(l+3) ,

�
W (l + 1)− Ŵ (l )

�%
,

hence guarantees that the deviation tol trials is not profitable. Q.E.D.

Proof of Proposition 4. Considern∗ (c), the optimal number of trials under direct
information acquisition by definition in (11). To prove the Proposition it is sufficient
to show that there exists an equilibrium in which the sender performsn∗ (c) trials and
fully reveals his information in the communication stage. Such an equilibrium, if it
exists, would be the expert-preferred equilibrium. So, in any Pareto-efficient equilibrium
the decision-maker’s expected payoff has to be (at least weakly) greater than in this
equilibrium.

To establish the existence of the desired equilibrium, in which the expert runsn∗ (c) tri-

als and fully reveals their realizations, first, note that the conditionb ≤
�
2
�

1+ 2
3c + 2

�−1

and definition (11) together imply thatb ≤ 1
2(n∗(c)+2) . So, by Lemma 2 full revelation is

incentive compatible at the communication stage after the expert runsn∗ (c) trials.
Further, the expert’s expected payoff after runningn∗ (c) trials and fully revealing their

realizations is equal to− 1
6(n∗+2)−b2−cn∗. By definition,n∗(c) ∈ arg maxn− 1

6(n+2)−cn.

Hence,n∗(c) ∈ arg maxn W (n)− cn≡ − 1
6(n+2) − b2− cn.

So, to complete the proof it is sufficient to establish that for any n ∈ {0,1, ...,∞},
W (n) ≥ Ŵ (n) whereŴ (n) is the expected payoff that the expert gets after deviating
to n signals.

To establish this inequality, first, note thatW (n) =
�n

j=0
W( j ,n)

n+1 where

W ( j,n) = −
� 1

0

�
E
�
θ | j,n

�
− θ − b

�2
f (θ | j,n)dθ

= −
� 1

0

�
E
�
θ | j,n

�
− θ

�2
f (θ | j ,n)dθ − b2

= −
�
(E
�
θ | j,n

�
)2− 2(E

�
θ | j,n

�
)

j + 1

n+ 2
+ ( j + 2) ( j + 1)

(n+ 3) (n+ 2)

�
− b2

= −
�	

j + 1
n+ 2


2

− 2
	

j + 1
n+ 2



j + 1
n+ 2

+ ( j + 2) ( j + 1)

(n+ 3) (n+ 2)

�
− b2

(A8) = −
�
( j + 2) ( j + 1)

(n+ 3) (n+ 2)
−
	

j + 1

n+ 2


2
�
− b2
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Similarly, Ŵ (n) =
�n

j=0
Ŵ( j ,n;)

n+1 , where

Ŵ ( j, n) = − max
yj∈

$
1

n∗+2 ,
2

n∗+2 ,...,
n∗+1
n∗+2

%

� 1

0

�
yj − θ − b

�2
f (θ | j,n)dθ

= −
� 1

0

�
(yj − b)2+ θ2− 2θ(yj − b)

� (n+ 1)!
j ! (n− j )!

θ j (1− θ)n− j dθ

= −
�
(yj − b)2+

� 1

0

(n+ 1)!

j ! (n− j )!
θ j+2 (1− θ)n− j dθ − 2(yj − b)

� 1

0

(n+ 1)!

j ! (n− j )!
θ j+1 (1− θ)n− j dθ

�

= −
�
(yj − b)2+ (n+ 1)!

j ! (n− j )!
(2+ j )! (n− j )!

(n+ 3)!
− 2(yj − b)

(n+ 1)!
j ! (n− j )!

(1+ j )! (n− j )!

(n+ 2)!

�

= −
��

yj − b
�2− 2

�
yj − b

� j + 1

n+ 2
+ ( j + 2) ( j + 1)

(n+ 3) (n+ 2)

�
.

(A9)

Note that the messageyj optimally chosen by typej (i.e. the expert who observedj suc-
cesses inn trials) has to be compatible with the equilibrium beliefs that he has acquired
n∗ signals, even off the equilibrium path. Therefore,yj ∈

�
1

n∗+2,
2

n∗+2, ...,
n∗+1
n∗+2

�
.

The proof proceeds by showing that for anyj ≤ n− j
(A10)

D ( j, n) ≡
�
W ( j,n)− Ŵ

�
j ,n; yj

��
+
�
W (n− j, n)− Ŵ

�
n− j,n; yn− j

��
≥ 0.

Since typesj andn− j are ex-ante equally likely aftern experiments, inequality (A10)
implies thatW (n) ≥ Ŵ (n). 22

Before computingD ( j,n) let us establish the following useful property.
Claim A. Suppose thatyj = k+1

n∗+2 for somek ∈ {0,1, ...,n∗}. Then eitheryn− j =
n∗−k+1

n∗+2 or yn− j = n∗−k+2
n∗+2 .

Proof of Claim A: For any j ∈ {0,1, ...,n}, define

(A11) k j ∈ arg min
k′=0,...,n∗






k′ + 1
n∗ + 2

−
	

j + 1
n+ 2

+ b






 .

If for some j , the maximizerk′ of the above expression is not unique, then choose one
of the (two) maximizers arbitrarily and set it equal tok j . So,yj = k j+1

n∗+2.
We need to distinguish two cases:

Case 1:yj = k j+1
n∗+2 ≤

j+1
n+2, and Case 2:yj = k j+1

n∗+2 >
j+1
n+2.

22If n is odd, there is an even number of possible types{0,1, ...,n + 1}, and n+1
2 pairs of types( j ,n− j ) with

j ≤ n− j . If n is even, then there is an odd number of possible types, and so there aren
2 pairs( j,n− j ) with j < n− j ,

plus the typen
2 . When j = n

2 , we haven − j = j . In this caseD
� n

2 ,n
�
= 2

�
W
� n

2 ,n
�
− Ŵ

�
j, n; y j

��
. The result

then follows by showing thatD
� n

2 , n
�
> 0 and thatD ( j ,n) > 0 for each pair( j,n− j ) with j < n

2 .
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Let us start with Case 1. We will show that in this case,yn− j = n∗−k j+1
n∗+2 .

Sinceb ≥ 0, we have: 0≤ j+1
n+2−

k j+1
n∗+2 ≤

k j+2
n∗+2−

j+1
n+2. By (A11),




 k j+1
n∗+2 −

�
j+1
n+2 + b

�


 ≤


 k j+2
n∗+2 −

�
j+1
n+2 + b

�


. So we have:






n∗ − k j + 1

n∗ + 2
−
	

n− j + 1

n+ 2
+ b






 =






j + 1

n+ 2
− k j + 1

n∗ + 2
− b





 ≤ b+






j + 1

n+ 2
− k j + 1

n∗ + 2





 ≤

b+





k j + 2

n∗ + 2
− j + 1

n+ 2





 =




b+

k j + 2

n∗ + 2
− j + 1

n+ 2





 =





n∗ − k j

n∗ + 2
−
	

n− j + 1

n+ 2
+ b






 .

(A12)

Inequality (A12) implies that typen − j prefers the actionn
∗−k j+1
n∗+2 associated with

messagen∗ − k j to the actionn∗−k j

n∗+2 associated with messagen∗ − k j − 1. This, in

combination withn∗−k j+1
n∗+2 ≥ n− j+1

n+2 and the fact that the utility function of typen− j is

single-peaked around the maximumn− j+1
n+2 + b, b ≥ 0, implies that typen − j prefers

messagen∗ − k j to any message lower thann∗ − k j − 1.
Let us now show that typen− j also prefers to send messagen∗ − k j associated with

action n∗−k j+1
n∗+2 rather than any higher message associated with a higher action. This is

immediate ifn− j+1
n+2 +b ≤ n∗−k j+1

n∗+2 If, on the other hand,n− j+1
n+2 +b> n∗−k j+1

n∗+2 , this follows

from the following facts: (i)n− j+1
n+2 ≤ n∗−k j+1

n∗+2 , so n− j+1
n+2 +b− n∗−k j+1

n∗+2 ≤ b ≤ 1
2(n∗+2) ; (ii)

n∗−k j+2
n∗+2 − n− j+1

n+2 −b ≥ 1
n∗+2−b ≥ 1

2(n∗+2) , (iii) type n− j ’s payoff function is symmetric

and single-peaked atn− j+1
n+2 + b.

Next, consider Case 2:yj = k j+1
n∗+2 >

j+1
n+2. Let us show that in this caseyn− j ∈$

n∗−k j+1
n∗+2 ,

n∗−k j+2
n∗+2

%
.

Since n∗−k j+1
n∗+2 < n− j+1

n+2 andb ≥ 0, the expert of typen − j gets a strictly higher

payoff from actionn∗−k j+1
n∗+2 than from any lower action. Thus, it remains to show that

typen− j ’s expected utility from actionn
∗−k j+2
n∗+2 is higher than her expected utility from

any higher action.

Further, note that we must havej+1
n+2 ≥

k j

n∗+2. Otherwise, sinceb ≤ 1
2(n∗+2) , type j

would get a higher utility from actionk j

n∗+2 than from actionk j+1
n∗+2, which would contradict

yj = k j+1
n∗+2.

Thus, n− j+1
n+2 ≤ n∗−k j+2

n∗+2 , and since the expected utility function of the typen − j is

symmetric around its maximum aty = n− j+1
n+2 + b andb ≤ 1

2(n∗+2) , we conclude that the

typen− j gets a higher expected utility from actionn∗−k j+2
n∗+2 than from any other actions.

This completes the proof of Claim A.
Let us now turn back to the proof of the Proposition and compute D ( j,n). From (A8),
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(A9), (A10) we have

D ( j,n) = ( j + 1)2

(n+ 2)2
+ (n− j + 1)2

(n+ 2)2
− 2b2

+
��

yj − b
�2+

�
yn− j − b

�2− 2
�
yj − b

� j + 1
n+ 2

− 2
�
yn− j − b

� n− j + 1
n+ 2

�

= ( j + 1)2

(n+ 2)2
+(n− j + 1)2

(n+ 2)2
+
�

y2
j + y2

n− j − 2yj
j + 1
n+ 2

− 2yn− j
n− j + 1

n+ 2
− 2b(yj + yn− j − 1)

�

(A13) =
	

yj −
( j + 1)
(n+ 2)


2

+
	

yn− j −
(n− j + 1)
(n+ 2)


2

− 2b(yj + yn− j − 1).

If yn− j = n∗−k j+1
n∗+2 , thenyj+yn− j = 1, and hence by (A13)D ( j,n) =

�
yj − ( j+1)

(n+2)

�2
+

�
yn− j − (n− j+1)

(n+2)

�2
. The latter expression is nonnegative.

If insteadyn− j = n∗−k j+2
n∗+2 , thenyj + yn− j = 1+ 1

n∗+2. So, by (A13),

D ( j,n) =
	

yj −
j + 1
n+ 2


2

+
	

yn− j −
n− j + 1

n+ 2


2

− 2b

n∗ + 2

=
	

j + 1

n+ 2
− k j

n∗ + 2


2

+
	

k j + 1

n∗ + 2
− j + 1

n+ 2


2

− 2b

n∗ + 2
(A14)

In the proof of Case 2 of Claim A, we have established thatk j

n∗+2 ≤
j+1
n+2 ≤

k j+1
n∗+2.

Observe thatk j+1
n∗+2 −

k j

n∗+2 = 1
n∗+2. So the value of the first two terms ofD ( j,n),�

j+1
n+2 −

k j

n∗+2

�2
+
�

k j+1
n∗+2 −

j+1
n+2

�2
, depends only onk j+1

n∗+2 −
j+1
n+2 and reaches its mini-

mum when j+1
n+2 =

k j+1/2
n∗+2 . In this case,

�
j+1
n+2 −

k j

n∗+2

�2
+
�

k j+1
n∗+2 −

j+1
n+2

�2
= 1

2(n+2)2
,

and D ( j, n) = 1
2(n+2)2 −

2b
n∗+2. Hence,D ( j ,n) ≥ 0 whenb ≤ 1

4(n∗+2) . This con-
cludes the proof that under the given conditions on the parameters,D ( j, n) ≥ 0 hence
W (n) ≥ Ŵ (n). Q.E.D.

Proof of Proposition 5 The proof of proposition 1 shows that ifb ≤
��

1+ 2
3c + 3

�−1

andc ≤ 5−
√

17
48 , the overt game has an equilibrium in which the partner acquiring infor-

mation performsn∗(c) + 1 trials and then reveals them to the decision making partner,
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so thatE
�
− (ȳ− θ)2 |P

�
= E

�
− (y∗ − θ)2 |n∗(c)+ 1

�
. The stronger result that

E
�
− (ȳ− θ)2 |P

�
− E

�
−
�
y∗ − θ

�2 |n∗(c)
�

= E
�
−
�
y∗ − θ

�2 |n∗(c)+ 1
�
− E

�
−
�
y∗ − θ

�2 |n∗(c)
�
≥ [n− n∗(c)]

c

2
= c/2

is satisfied when the costc is not too large, i.e., when

− 1
6(n∗(c)+ 3)

− c

2
(n∗(c)+ 1) ≥ − 1

6(n∗(c)+ 2)
− c

2
n∗(c).

This inequality is satisfied whenc ≤ 1
3(n∗(c)+3)(n∗(c)+2) , which is shown to always hold,

using the expression forn∗ (c) of Lemma (4).
Likewise, the proof of proposition 3 shows that ifb ≤ 1

4(n+3) , and
1

6(n+2)(n+3) < c < 1
6(n+1)(n+3) − max

�
0,
�

1
3b
�
In=0,

�
24b−1

96

�
In=1,

�
30b−1

450

�
In=2,

�
30b−1

360

�
In=3,

�
63b−2

735

�
In=4

�
, then the covert game has an equilibrium in which the partner

acquiring information performsn∗(c)+1 trials and then reveals them to the decision mak-
ing partner. Because 1

6(n+1)(n+3) ≤
1

3(n+3)(n+2) , the constraint thatc ≤ 1
3(n∗(c)+3)(n∗(c)+2)

does not impose any additional constraint on the sufficient conditions of 3.�

*
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