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1 Introduction

This paper deals with mechanism design when buyers are budget constrained. Budget con-

straints often affect participants in trading mechanisms and institutions. In particular, con-

sumers typically face wealth and liquidity constraints which reduce their ability to pay for

the goods, especially for big-ticket items like houses and cars. In the keyword search auctions

on the internet search platforms (Google, Microsoft’s Bing), the advertisers typically face

spending limits set by the senior management. The economists have pointed out that budget

constraints are an important practical matter affecting bidding and outcomes in spectrum

auctions. See, in particular, Rothkopf (2007) and Bulow, Milgrom and Levin (2009). So it

is natural that budget constraints should be taken into account in the analysis and design of

trading mechanisms and institutions, and there is now a growing literature exploring the im-

plication of budgets constraints in these contexts. With some notable exceptions, discussed

below, this literature focuses on the analysis of specific institutions such as different forms

of auctions.

In contrast, this paper deals with the design of an optimal mechanism maximizing the

seller’s revenue and a constrained efficient mechanism maximizing the social surplus. We

consider a setting in which several buyers compete for a single good and the seller acts as

a mechanism designer. The buyers have private values and commonly known and unequal

budgets.

There are several real-world environments in which the bidders’ budgets are typically

known by the seller and other bidders. First, in large-scale privatization auctions of state

assets in Eastern Europe and other countries, as well as in the auctions of publicly-owned

stakes in corporations or tracts of natural resources, the bidders are/were typically large

corporations whose financial resources were fairly well-known, or could be estimated fairly

precisely from their financial and other reports. Alternatively, the sellers of high-value assets

may and often do require the bidders to qualify by disclosing their resources and financial

situations. In a somewhat different domain, a number of professional sports leagues in North

America such as NHL and NFL have salary caps. So when the teams bid for players, their

maximal budgets are the available room under their salary caps that are publicly known.

In this paper we characterize both the optimal i.e., revenue-maximizing, and constrained-

efficient i.e., surplus maximizing, mechanisms. The motivation for studying optimal mecha-

nisms is broadly recognized in the literature. Designing the most efficient mechanism is also

an important objective.1 Attaining efficiency is especially problematic and full efficiency

1A notable example is the privatization of government-controlled assets. Maskin (1992) points out that
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often cannot be attained when the buyers have limited budgets, because in this case their

willingness to pay cannot be fully translated into their bids.

The optimal and constrained-efficient mechanisms that we derive share a number of

interesting and novel qualitative properties. Since these properties are common to both

of these mechanisms, we simplify the presentation by focussing on the optimal mechanism

below. The constrained-efficient mechanism is presented separately in section 7.

To attenuate the effect of budget asymmetry we will provide main characterization re-

sults for the case of identically distributed valuations. However, we show how our results

generalize to the environment with asymmetrically distributed valuations in Appendix B at

the end of the paper. An important implication of the budget asymmetry is that the designer

has to construct ex-ante asymmetric allocation profiles (probability of trading and transfer

function), one for each buyer, and do so in a consistent way. In a symmetric situation when

all budgets are equal and the bidders’ valuations are drawn from the same distribution, a

mechanism designer has to construct only a single allocation profile offered to every buyer.

This affords a significant analytical simplification, which is not available here.

We show that qualitatively the optimal mechanism belongs to one of the two classes,

depending on the profile of budgets.2 If the budget differences between the buyers are

sufficiently small (in the sense made precise below), the optimal mechanism is a so-called

“top-auction.” It is characterized by a common threshold value x̄t at which the budget

constraint of each bidder becomes binding. All the buyers with values below x̄t are treated

symmetrically: each of them gets the good when she has the highest value and pays a transfer

derived by the standard envelope result.

Any bidder with value exceeding x̄t pays her budget, and gets the good with a probability

that typically jumps at xt but does not change with the bidder’s value on [x̄t, 1]. So, all buyers

with values above x̄t are essentially tied. The tie-breaking rule setting the probabilities, with

which different bidders with values exceeding x̄t get the good, plays an important role in

this mechanism. In fact, it is the only instrument used by the seller to discriminate between

in privatization auctions, between the objectives of allocative efficiency and maximizing revenue, “the first

... is generally the more urgent in the countries of Eastern Europe.” Efficiency has also been one of the goals

in telecommunication spectrum auctions. In the US, the Congress mandated the Federal Communications

Commission to allocate spectrum in a way that promotes efficiency. The British government has also set

efficiency as a goal. For more on this, see Dasgupta and Maskin (2000) and Binmore and Klemperer (2002).

2We will assume that each bidder’s budget is sufficiently small so that it becomes binding at higher values.

As we will show below, a sufficient condition for this is that each budget is less than the price set by a seller

facing a single bidder.
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different bidders. Particularly, this probability is higher for a richer bidder to compensate

her for the higher payment, equal to her budget, to the seller.

The threshold x̄t is determined by the sum of individual budgets. In turn, x̄t determines

the reservation value which is lower than in the standard case without budget constraints.

This happens because the bidders with values above x̄t pay their budgets, and the seller

cannot extract more surplus from them. Therefore, the tradeoff between higher efficiency

and leaving greater surplus to the bidders shifts to higher efficiency at lower values.

When the buyers’ budgets are sufficiently different, the “top auction” is infeasible because

the seller can no longer achieve necessary differentiation between the buyers by discriminating

only “at the top.” In particular, it becomes impossible to allocate the good to the buyers

with valuations above the (endogenous) threshold x̄t in such a way that each buyer pays her

budget. The optimal mechanism in this case is what we call a “budget-handicap auction” in

which the seller uses two kinds of discrimination between the buyers. First, she sets different

thresholds for different buyers or groups of buyers. Naturally, richer buyers have higher

thresholds. Not all thresholds have to be different: there may be clusters of buyers with the

same threshold. But there is more than one threshold across bidders. A richer bidder with a

value above her threshold gets the good with a higher probability than a poorer bidder with

a value above her respective threshold. This is like in the top auction, except the thresholds

are now different.

Importantly, in the budget-handicap auction the seller also discriminates between buyers

with low values. In particular, a poorer bidder gets the good with a higher probability than a

richer bidder when they both have the same value below the threshold of the poorer bidder.

A poorer bidder also faces a lower reservation value than a richer bidder. This handicapping

of richer bidders creates more competition for them from poorer ones, and allows the seller

to extract the whole budgets from richer bidders with high values. But it also introduces an

additional inefficiency into the mechanism.

In a seminal paper on the optimal auction design, Myerson (1981) has considered bidders

whose values are drawn from different distributions and established the optimality of hand-

icapping the buyers whose values are more likely to be high and who, therefore, have lower

virtual values than the bidders whose values are more likely to be low.3 In our model, the

bidders’ asymmetry comes from another source- budget differences. When these differences

3More recently Jehiel and Lamy (2015) have considered the optimality of such discrimination when auction

entry is costly. They showed that discrimination is suboptimal if costly entry precedes buyers’ learning their

values. However, “incumbent” bidders who do not face entry costs should be handicapped.
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are sufficiently large, an asymmetry of virtual values arises endogenously and leads to hand-

icapping of richer bidders, even when the bidders’ values are identically distributed. While

such handicapping occurs at all possible values in Myerson (1981), in our setting only rich

bidders with low values are handicapped and lose the good to poorer bidders with the same

values. However, richer bidders with high values get the good with a greater probability

than poorer bidders with such values.

The optimal mechanism is unique, and the necessary and sufficient conditions for it

are provided in Theorem 2. On the way towards this result, we show that the profile of

the bidders’ thresholds determines all elements of the optimal mechanism, except for the

tie-breaking allocation rule for types above the threshold when this threshold is the same

for several bidders. Interestingly, the optimality conditions for a profile of thresholds are

essentially the feasibility conditions ensuring consistency between the allocation probabilities

at the thresholds and the binding budget constraints at the thresholds. We provide the

intuition for these conditions in the discussion following Theorem 2.

Building on this result, Theorem 3 presents the conditions for the optimality of the “top

auction.” The “budget-handicap” auction is optimal in the complementary case. The most

challenging part in computing the “budget-handicap” auction is determining the “clusters”

of bidders with the same threshold. This problem is not analytically difficult as it only

involves checking the conditions of Theorem 2 for a given cluster configuration. However,

one may have to go through all such configurations to determine the optimal one, which is

a combinatorial problem that can be solved computationally. We provide an illustration by

computing the optimal mechanism with two and three bidders, the latter - under uniform

type distribution. The example with three bidders is particularly telling as it shows that every

possible cluster configuration is optimal for a set of budget profiles of a positive measure.

The optimal mechanism can be implemented via an indirect bidding mechanism which

combines the features of an all-pay auction and a lottery. Precisely, a bidder is offered a

choice between buying a lottery ticket by paying her whole budget, and participating in an

all pay-auction. A bidder chooses to buy a lottery ticket if her value is above her respective

threshold, and participates in the all-pay auction otherwise. The difference between the

top auction and the budget handicap auction is that in the former the all-pay auction is

symmetric: a bidder gets the good if her bid is the highest and no one has chosen to

buy a lottery ticket. In contrast, in the budget-handicap mechanism the all-pay auction is

asymmetric and handicaps richer bidders. So, a bidder gets the good if her bid exceeds the

bids of poorer bidders with lower thresholds by a certain margin, and also exceeds the bids,
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lowered by a certain margin, of richer bidders with higher thresholds.

A natural question is how the variability of budgets affects the seller’s profits. We show

that the seller weakly prefers less budget variability and, with a fixed aggregate budget,

she gets the highest expected profits when each bidder has the same budget (Theorem 5).

However, the seller’s revenue does not change after a sufficiently small redistribution of the

aggregate budget between the bidders. This is a consequence of the fact that the optimal

mechanism (top auction) and the threshold in it are robust to such small redistribution.

Technically, our paper contains a number of interesting elements. Among them - the

equivalence between the optimality and feasibility conditions for the mechanism. Another

interesting aspect is the uncovered strong connection between the threshold values at which

budget constraints become binding and the Lagrange multipliers associated with budget

constraints. Not only there is a one-to-one relationship between them, as demonstrated by

Theorem 1, but also the strong duality property between them ultimately allows us to derive

the optimal mechanism.

Finally, although we focus on the case in which all budget constraints are binding, our

results also apply when some bidders have high budgets and do not face budget constraints.

In the related literature, the paper closest to ours is Laffont and Robert (1996) who

consider a similar environment with commonly known but equal budgets. They derive an

optimal mechanism which is a special case of our top auction. Their optimal mechanism

is symmetric and does not allow to figure out what the seller should do when the bidders’

budgets are different. Yet, it is important and interesting to understand mechanism design

in such ex-ante asymmetric environments as ours, since equal budgets are a knife-edge case.

To highlight the effects of budget asymmetry, a surprising result of our analysis is that

the bidders’ thresholds remain equal when budget differences are sufficiently small, yet there

is discrimination between the bidders with high valuations via the tie-breaking rule at the

top. So, our “top auction” provides a generalization of the optimal auction of Laffont and

Robert (1996) to a setting with small budget asymmetry. However, a qualitatively different

mechanism - “budget-handicap auction”- is optimal when budget differences are large.

Maskin (2000) studies constrained-efficient mechanisms for two and three bidders who

have equal and publicly known budgets, and whose valuations are drawn from different

distributions. He assumes a common valuation threshold at which each bidder’s budget

constraint becomes binding. Yet, our analysis shows that this is generally not true in either

constrained-efficient or optimal mechanisms when the budgets are sufficiently asymmetric.

Malakhov and Vohra (2008) derive optimal dominant strategy mechanism for two buyers
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with values distributed over a discrete support, one of whom faces no budget constraint and

the other has a known fixed budget. Their mechanism is similar to the one that we derive

in the extension of our example with two bidders one of whom has a small budget and the

budget of the other is larger than the “monopoly” price for a single buyer.

Pai and Vohra (2014) study optimal mechanism design with private budgets and identi-

cally distributed valuations. In their work, the budgets and valuations have a finite support,

with a continuous distribution considered in an extension. They provide a significant con-

tribution to multidimensional mechanism design showing how one can work directly with

reduced form auctions. They show that in the optimal mechanism some buyer types receive

separating allocations and some buyer types are pooled, although it is hard to pin down

those intervals exactly. An extension of their paper considers bidders with equal and public

budgets.

Although out setting with publicly known budgets is different from the one with privately

known budgets and values in Pai and Vohra (2014), it is nevertheless interesting to compare

the differential treatment of richer and poorer buyers in these two settings, since most other

works focus on bidders with equal budgets. Pai and Vohra (2014) establish that “pooling

serves to allot the good to disadvantaged buyer types ... even in profiles where there are

buyers with higher valuations and budgets present.” In contrast, in our setting handicapping

of high-budget bidders occurs - when budget differences are large- in the region of separating

allocations at low values, while the region of pooling includes high-value bidders, where richer

bidders get the good with a higher probability.

In the earlier literature on auctions with budget constraints, Che and Gale (1998) compare

the performance of first- and second-price auctions when the buyers have privately known

budgets and values. They show that the first-price auction yields higher expected social

surplus and expected revenue. Che and Gale (1996) show that the all-pay auction performs

better than the first-price auction under common value and private budgets. Che and Gale

(2000) explore optimal nonlinear pricing for a buyer with privately known value and budget.

Zheng (2001) studies the first-price auction in which budget-constrained buyers can bid

above their budgets. In case of a win such buyer can either use costly financing to cover the

deficit, or default and lose her budget. Hafalir, Ravi and Sayedi (2012) focus on a Vickrey

auction with budget-constrained bidders. In their framework, the bidders have different and

essentially known budgets. Although their mechanism is not optimal, it is “close” to a Pareto

efficient mechanism.

Borgs et. al (2005) and Dobzinski, Lavi and Nisan (2012) are concerned with domi-
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nant strategy mechanisms for allocating multiple goods. Both papers establish impossibility

results under private budgets, the latter- for Pareto optimal allocation, the former- for allo-

cation satisfying other properties that might be desirable. Borgs et. al (2005) then provide

an auction that asymptotically (as maximal budgets becomes large) attains the same revenue

as the posted price auction. Dobzinski, Lavi and Nisan (2012) demonstrate that with public

budgets, a Pareto optimal allocation can be attained by using Ausubel’s clinching auction.

In contrast to Dobzinski, Lavi and Nisan (2012), Baisa (2015) demonstrates that clinching

auction is a Pareto efficient mechanism under private budget constraints when the bidders’

beliefs satisfy full support assumption.

Importantly, Pareto optimality is inconsistent with the goal of revenue maximization

pursued in this paper, and a revenue maximizing seller would not offer a Pareto optimal

mechanism. In particular, handicapping a richer bidder, as in the budget-handicap auc-

tion, and allocating the good randomly between the bidders with values above the common

threshold, as in the top auction, can not occur in a Pareto optimal mechanism.

Che, Gale and Kim (2013a) and (2013b) and Richter (2016) study revenue-maximizing

and welfare-maximizing assignment of a divisible good to a continuum of budget-constrained

agents. The nature of the problem studied by these authors is very different from that of

our problem. In particular, as discussed in Richter (2016), his model can be reinterpreted

as a single-agent problem in which budget and supply must be balanced on average, and

transfers between types of this single agent are permitted.

The rest of the paper is organized as follows. Section 2 develops the model. Section 3

presents a two-bidder example. Section 4 presents the main steps in the analysis. Section

5 provides the characterization of the optimal mechanism and its qualitative properties.

Section 6 contains additional examples, including the case of three bidders. Section 7 deals

with constrained-efficient mechanism and highlights the differences between the latter and

the optimal mechanism. Section 8 concludes. The proofs are relegated to Appendix A.

Appendix B deals with the case of asymmetrically distributed valuations.

2 Model and Preliminaries

A seller with one unit of the good faces n bidders. Bidder i ∈ {1, ..., n} has privately known

value xi for the good drawn from a common knowledge distribution F (.), which possesses
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a continuous positive density function f(.) s.t. f(x) > 0 for all x in the support of F (.).4

Without loss of generality, we assume that the support of F (.) is [0, 1].

Bidder i with valuation xi gets a payoff equal to xiqi − ti if she gets the good with

probability qi and pays ti to the seller. This bidder is endowed with budget mi which ti can

never exceed. The budgets are commonly known and are assumed to be sufficiently small,

relative to the range of possible valuations.5 Furthermore, our results apply also when only

some bidders have binding budget constraints.

We will impose a standard assumption on the distribution F (.):

Assumption 1 Increasing Hazard rate:

f(x)

1− F (x)
is increasing in x for all x ∈ [0, 1] (1)

In fact, a weaker assumption that x − 1−F (x)
f(x)

is increasing is sufficient, and we make the

increasing hazard rate assumption mainly for the sake of conformity with the literature.6

The seller has zero value for the good, and her payoff is the sum of all payments from the

buyers,
∑

i=1,..,n ti. For most part, we focus on the optimal mechanism designed by the seller

maximizing the seller’s expected revenue. However, we also consider constrained efficient

mechanism maximizing the expected surplus from the mechanism.

By the Revelation principle (Myerson 1979) we can restrict attention to direct truthful

mechanisms (Q1(.), ..., Qn(.)), (T1(.), ..., Tn(.)), where Qi(x̂1, ..., x̂n) is the probability that

the bidder i gets the good and Ti(x̂1, ..., x̂n) is the transfer that she pays to the seller. when

the profile of types (x̂n, ..., x̂n) is announced by the buyers.

Further, qi(xi) =
∫
x−i∈[0,1]n−1 Qi(xi, x−i)

∏
j 6=i dF (xj) and

ti(xi) =
∫
x−i∈[0,1]n−1 Ti(xi, x−i)

∏
j 6=i dF (xj) are the expected probability that bidder i gets

4We focus on the symmetric distribution case in order to highlight the consequences of the budget differ-

ences between the bidders. However, our analysis can be extended to the case where each bidder’s valuation

is drawn from a different probability distribution Fi(.).

5As we show below in Lemma 8, a sufficient condition for all budget constraints to be binding in the

optimal mechanism is maximi ≤ arg max p(1 − F (p)) i.e., the highest budget is below the price set by a

seller facing a single buyer without a budget constraint. With multiple bidders, competition causes a bidder’s

budget constraint to be binding even if her budget exceeds this level.

6Pai and Vohra (2014) suggest that a stronger assumption that f(x) is nonincreasing is necessary in the

setting with budget constraints because bidder i’s virtual value is x− 1−F (x)−λi

f(x) on the interval of x adjacent

to zero, where λi is a Lagrange multiplier associated with i’s budget constraint. However, as we show below,

in the optimal mechanism λi ≤ 1 − F (x) on the appropriate interval of x. Therefore, the monotonicity of

x− 1−F (x)
f(x) guarantees the monotonicity of x− 1−F (x)−λi

f(x) and the extra assumption on f(x) is unnecessary.
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the good and her expected payment, respectively, when she announces type xi and all other

bidders announce their types truthfully. With a slight abuse of terminology we will also refer

to the collection (qi(.), ti(.)), i ∈ {1, ..., n} as a mechanism.

An optimal mechanism solves the revenue maximization problem of the seller:

max
∑

i=1,...,n

∫
(x1,...,xn)∈[0,1]n

Ti(x1, ..., xn)
∏

i=1,...,n

dF (xi) (2)

subject to the following:

(i) interim incentive constraints:

xiqi(xi)− ti(xi) ≥ xiqi(x̂i)− ti(x̂i), for all (xi, x̂i) ∈ [0, 1]2 and all i ∈ {1, ..., n}. (3)

(ii) individual rationality constraints:

xiqi(xi)− ti(xi) ≥ 0 for all i and xi ∈ [0, 1]. (4)

(iii) budget constraints:

Ti(xi, x−i) ≤ mi for all i, xi ∈ [0, 1], x−i ∈ [0, 1]n−1. (5)

(iv) feasibility constraints :∑
i

Qi(x1, ..., xn) ≤ 1 and Qi(x1, ..., xn) ≥ 0 for all (x1, ..., xn) ∈ [0, 1]n. (6)

3 Example

To illustrate our results we first present the optimal mechanism for two bidders, 1 and 2,

with budgets m1 and m2, respectively, satisfying m1 ≥ m2 without loss of generality.

If the budgets are sufficiently small and close to each other then the optimal mechanism

is a “top auction”7 defined by four parameters: reservation value rt; threshold value x̄t; and

expected probabilities of trading “at the top,” q1(x̄t) and q2(x̄t) (see Theorem 3 for details).

In the “top auction,” the budget constraint of either bidder is not binding when her value

is below x̄t. Despite budget asymmetry, for bidder i with value in [rt, x̄t) the top auction

7 By Lemma 8, a sufficient condition for both bidders’ budgets to bind in the optimal mechanism is

m1 ≤ arg maxp p(1 − F (p)) i.e., bidder 1’s budget is smaller than the seller’s optimal price when she faces

only this bidder. However, a weaker condition m1 < 1−
∫ 1

r′:r′=
1−F (r′)

f(r′)
Fn−1(x)dx is necessary and sufficient

for both budget constraints to be binding when the budgets are close to each other and so the optimal

mechanism is a top auction.
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looks exactly like a standard symmetric auction: she gets the good when her competitor has

a lower value, although the reservation value rt is lower than without budget constraints.

At x̄t both budget constraints become binding: bidder i with value in [x̄t, 1] pays her

whole budget and gets the good with probability qi(x̄
t). Naturally, a richer bidder has a

higher probability of trading at the top, q1(x̄t) > q2(x̄t). In fact, both q1(x) and q2(x) jump

at x = x̄t, except in the borderline parameter case in which only q1(x) jumps (to 1). So the

top auction discriminates only between buyers with high values.

Since the net payoff of a bidder with value xi ∈ [x̄t, 1] is equal to qi(x̄
t)xi − mi =

qi(x̄
t)(xi − x̄t) +

∫ x̄t
rt
F (x)dx, a high-value bidder with a higher budget gets a higher payoff

than the bidder with the same value but a lower budget.

The threshold value x̄t is found from the aggregate budget constraint (see Theorem 3):

m1 +m2 = x̄t(1 + F (x̄t))− 2

∫ x̄t

rt
F (x)dx

where (1 +F (x̄t)) is the maximal feasible value of q1(x̄t) + q2(x̄t), and rt is the level at which

a bidder’s virtual in this mechanism is zero. Precisely, rt =
1−F (rt)− (1−F (x̄t))2

1−F (x̄t)+x̄tf(x̄t)

f(rt)
.

The top auction is not always feasible. It has to satisfy q1(x̄t) ≤ 1 and q2(x̄t) ≥ F (x̄t).

These conditions together with binding budget constraints at x̄t i.e., mi = qi(x̄
t)x̄t −∫ x̄t

rt
F (x)dx, imply that m1−m2 ≤ x̄t(1−F (x̄t)). If this inequality holds, the top auction is

the optimal mechanism. If it fails, the top auction is infeasible. Instead, the threshold x̄1 at

which the budget constraint of the richer bidder 1 becomes binding has to be greater than

the corresponding threshold x̄2 of the poorer bidder 2.

This has a number of consequences for the mechanism. First, bidder 1’s probability of

trading jumps to 1 at x̄1, while bidder 2’s probability of trading continuously reaches its

maximal value F (x̄1) at x̄2 . Significantly, the bidders no longer face a symmetric auction at

lower values. Instead, richer bidder 1 is handicapped. She faces a higher reservation value

i.e., r1 > r2. Also, bidder 1 with value x ∈ [r1, x̄1) gets the good with a lower probability

than bidder 2 with the same value. Because of this, we refer to this mechanism as a “budget-

handicap” auction (Theorem 4). The handicapping of bidder 1 generates more competition

from bidder 2 allowing the seller to extract the whole budget from high-value bidder 1.

For some values of the budgets neither budget constraint or only bidder 2’s budget

constraint is binding. The condition for the former is simple: the poorer bidder 2 with

valuation 1 must not be budget constrained in a standard symmetric auction i.e., m2 ≥
1−
∫ 1

rs
F (x)dx with rs satisfying rs− 1−F (rs)

f(rs)
= 0. Only bidder 2’s budget constraint is binding

if m2 fails this condition, while m1 is above the “monopoly” price pm = arg maxp p(1−F (p)).
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Figure 1: Expected Probabilities of Trading with Two Bidders

(a) Top Auction (b) Budget-Handicap Auction

In this case, the optimal mechanism is like the “budget-handicap” auction, except that bidder

1 with value above her threshold x̄1 gets the good with probability 1 but pays less than m1.

The implementation of the “top-auction” and “budget-handicap auction” via an indirect

mechanism combining an all-pay auction with a lottery is discussed in Section 5 for n bidders.

With two bidders, this implementation involves an all-pay auction for the poorer bidder 2,

while richer bidder 1 is offered a choice between the all-pay-auction and a “buy-it-now”

option: she can get the good for sure by paying his budget.

The expected probabilities of trading in the “top auction” and “budget-handicap auction”

are depicted in Figure 1. Figure 2 summarizes how the nature of the optimal mechanism

depends on the budgets m1 and m2 when the bidders’ types are distributed uniformly.

4 Analysis

Our first result establishes the existence and uniqueness of the optimal mechanism.

Lemma 1 There exists an (almost everywhere) unique optimal mechanism

(Q1(.), ..., Qn(.), T1(.), ..., Tn(.)) solving the problem (2) subject to (3)-(6).

Proof of Lemma 1: The objective of the maximization problem (2) is a continuous linear

functional in the Hilbert space L2([0, 1]n). Its admissible set specified by constraints (3)-(6)

is convex. Therefore, by Theorem 2.6.1 in Balakrishnan (1993) the solution to our problem

exists. The uniqueness almost everywhere follows by standard arguments, in particular, the

linearity of the objective and the convexity of the constraints. Q.E.D.
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Figure 2: The Optimal Mechanism and Bidders’ Budgets.

Next, let Ui(xi) ≡ qi(xi)xi− ti(xi) be the net expected payoff of buyer i of type xi in the

optimal mechanism. The following result is standard and is left without proof:

Lemma 2 A mechanism (Q1(.), ..., Qn(.), T1(.), ..., Tn(.)) is incentive compatible and indi-

vidually rational if any only if the expected trading probability qi(xi) is nondecreasing in xi

for all i and xi ∈ [0, 1], and:

Ui(xi) =

∫ xi

0

qi(s)ds+ ci for some ci ∈ R+ (7)

The individual rationality requires the constant ci to be nonnegative. The optimality then

implies that ci = 0. Given this, we drop ci altogether from the analysis.

Combining Ui(xi) = xiqi(xi)− ti(xi) with (7) yields the following expression:

ti(xi) = xiqi(xi)−
∫ xi

0

qi(s)ds (8)

Consider now the budget constraints. First, we can replace the ex-post budget constraint

in (5) with the interim one, ti(xi) ≤ mi for all i and xi. Indeed, the interim budget constraints

obviously hold when (5) holds. In the opposite directions, if ti(xi) ≤ mi for all i and xi,

then (5) holds if we set Ti(xi, x−i) = ti(xi) for all i, xi and x−i. Doing so does not affect the

seller’s objective, the incentive or individual rationality constraints, since these depend only

on the expected transfers ti(.), but it can potentially relax the budget constraint in some

states of the world since the maximal payment by bidder i weakly decreases.

Next, suppose that (qi(.), ti(.)) are the expected probability of trading and transfer of

bidder i in some individually rational incentive compatible mechanism satisfying budget

12



constraints. Then define threshold x̄i as follows:

x̄i = inf{xi ∈ [0, 1]|ti(xi) = ti(1)} (9)

Lemma 3 Suppose that (qi(.), ti(.)) is an incentive compatible individually rational mecha-

nism. If x̄i < 1, then ti(xi) and qi(xi) are constant on the interval [x̄i, 1].

Proof of Lemma 3: Since qi(xi) is increasing in xi by Lemma 2, the expected transfer ti(xi)

must also be increasing in xi, for otherwise the mechanism cannot be incentive compatible.

Therefore, if x̄i < 1 then, for all xi ∈ (x̄i, 1], ti(xi) = ti(1) and hence qi(xi) = q̄i for some q̄i.

Since the allocation (q̄i, ti(1)) satisfies incentive and individual rationality constraints in (3)

and (4) of any type xi > x̄i it is also incentive compatible and individually rational for type

x̄i. So, without loss of generality, we can take ti(x̄i) = ti(1) and qi(x̄i) = q̄i. Q.E.D.

The threshold values x̄i, i ∈ {1, ..., n}, play an important role as the key choice variables

which ultimately determine the whole mechanism. Lemma 3 and equation (8) imply that

budget constraints ti(xi) ≤ mi can be replaced with the following one:

mi ≥ x̄iqi(x̄i)−
∫ x̄i

0

qi(s)ds (10)

So, the budget constraint of bidder i is binding when x̄i < 1 and (10) holds as an equality.

Next, replacing the transfers in the objective (2) with the right-hand side of (8), using

qi(x) = qi(x̄i) for all xi ∈ [x̄i, 1], and then integrating by parts yields the modified objective:

n∑
i=1

∫ 1

0

ti(xi)dF (xi) =
n∑
i=1

∫ 1

0

(
qi(xi)xi −

∫ xi

0

qi(x)dx

)
dF (xi)

=
n∑
i=1

∫ x̄i

0

qi(xi)

(
xi −

1− F (xi)

f(xi)

)
dF (xi) +

n∑
i=1

∫ 1

x̄i

qi(x̄i)x̄idF (xi) (11)

By Lemma 2, in order to ensure the incentive compatibility we need to impose on this

objective the condition that qi(xi) is increasing for all i. Following standard approach, we

will solve a relaxed program omitting this condition and then show that the solution is such

that qi(.) is increasing, strictly at x̄i from the left. The latter guarantees that (9) holds i.e.,

x̄i is the lowest type of i who makes the largest transfer. We will take care of the feasibility

constraints (6) by imposing them directly on the probabilities of trading.

Since we have imposed the condition that qi(x̄i) = qi(xi) for all xi ∈ (x̄i, 1] on the objective

(11) explicitly, to ensure that the budget constraint is satisfied for all types in [x̄i, 1] it is
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enough to impose (10) on it. Doing so yields the following relaxed program Lagrangian:.

L(Q, x̄, λ) =

n∑
i=1

∫ x̄i

0
qi(xi)

(
xi −

1− F (xi)

f(xi)

)
dF (xi) +

1∫
x̄i

qi(x̄i)x̄idF (xi)− λi
(
qi(xi)xi −

∫ xi

0
qi(x)dx−mi

)

=
n∑
i=1

∫ x̄i

0
qi(xi)

(
xi −

1− λi − F (xi)

f(xi)

)
dF (xi) +

1∫
x̄i

qi(x̄i)

(
x̄i −

λixi
1− F (x̄i)

)
dF (xi) + λimi


(12)

where λi is a Lagrange multiplier associated with bidder i’s budget constraint (10).

Next, using qi(xi) =
∫
x−i∈[0,1]n−1 Qi(xi, x−i)

∏
j 6=i dF (xj) and changing the order of sum-

mation and integration in (12) we can rewrite it as follows:

L(Q, x̄, λ) =

∫
(x1,...,xn)∈[0,1]n

n∑
i=1

Qi(x1, ..., xn)γi(xi)
∏

i=1,...,n

dF (xi) +
n∑
i=1

λimi. (13)

where γi (xi) is defined as follows for i ∈ {1, ..., n}:

γi (xi) =

{
xi − 1−λi−F (xi)

f(xi)
, if xi < xi,

xi − λixi
1−F (xi)

, if xi ≥ xi.
(14)

As seen from (13), γi(.) plays the role of the virtual value of bidder i. Recall that without

budget constraints, i’s virtual value is xi − 1−F (xi)
f(xi)

. So budget constraints cause the virtual

value of type xi ∈ [0, xi) to increase by an amount proportional to the value of the Lagrange

multiplier. Intuitively, this happens because when λi > 0, then all types above x̄i pay their

whole budget. So the seller cannot extract more surplus from these types, and increasing the

probability with which they get the good depresses the seller’s profits by less than without

budget constraints. On the other hand, since all types in [xi, 1] get the same allocation,

every type in this endogenous “atom” has the same virtual value, xi − λixi
1−F (xi)

.

Note that if bidder i’s budget constraint is not binding, then λi = 0, and so according

to (14) we recover the standard formula for the virtual value for all xi s.t. xi < x̄i. It is

still possible to have x̄i < 1 in this case. In particular, this occurs when bidder i’s budget

is sufficiently higher than the budget of any other bidder. We demonstrate that this may,

indeed, occur in our example with two bidders and uniform type distribution. Thus our

analysis also applies when only some bidders have binding budget constraints.

Inspection of (13) yields the following Lemma:

Lemma 4 Any solution to the relaxed program is such that for bidder i and (xi, x−i) ∈ [0, 1]n:

1. Qi(xi, x−i) = 1 if γi(xi) > max{0,maxj 6=i γj(xj)};
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2. Qi(xi, x−i) ∈ [0, 1] if γi(xi) = max{0,maxj 6=i γj(xj)};

3. Qi(xi, x−i) = 0 if γi(xi) < max{0,maxj 6=i γj(xj)}.

4.
∑n

i=1 Qi(x1, ..., xn) = 1 if mini γi(xi) > 0.

According to this Lemma, the profile of virtual values (γ1(x1), ..., γn(xn)) determines the

trading probabilities (Qi(x), ..., Qn(x)) uniquely except in the case of ties, when two or more

bidders have the highest virtual value. The ties that have zero probability can be ignored, as

the designer can resolve them arbitrarily without affecting her expected profits. In particular,

this applies to ties that involve a bidder-type xi ∈ [0, x̄i). However, all bidder types in [x̄i, 1]

have the same virtual value γi(x̄i) and essentially constitute an atom of probability 1−F (x̄i).

If γi(x̄i) = γj(x̄j) for some j 6= i, then every bidder type in [x̄i, 1] is tied with every bidder

type in [x̄j, 1]. This tie has a positive probability. As we show below, there may, in fact,

exist clusters of bidders with the same threshold x̄ < 1 and the same virtual value function

γ(x), x ∈ [0, x̄], even if they have unequal budgets. However, the tie-breaking rule between

the bidders with valuations above the threshold x̄ in a cluster will be uniquely defined by

their binding budget constraints (10) at x̄.

Significantly, Lemma 4 implies that it is optimal to set
∑n

i=1 Qi(x1, ..., xn)γi(xi) =

max{0,maxi γi(xi)} for all x = (x1, ..., xn) ∈ [0, 1]n. Therefore, we can replace Lagrangian

(13) with the following one that depends only on (x̄1, ..., x̄n) and (λ1, ..., λn):

L(x̄, λ) = max
Q: 0≤Qi(x)≤1,

∑
iQi(x)≤1

L (Q, x, λ) =

∫
x∈[0,1]n

max{0, max
i=1,...,n

γi(xi)}
∏
i

dF (xi)+
n∑
i=1

λimi.

(15)

Thus, solving the relaxed program boils down to finding the profile (x̄1, ..., x̄n, λ1, ..., λn)

maximizing (15) from which we then recover the probabilities of trading Qi(.) using Lemma

4. The following Theorem provides an important step towards solving this problem. To

display it, define

γ−i (x̄i) ≡ lim
xi↑x̄i

γi(xi) = x̄i −
1− λi − F (x̄i)

f(x̄i)
. (16)

Then we have:

Theorem 1 In any solution to the relaxed program, the profile (x̄1, ..., x̄n, λ1, ..., λn) is such

that:
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1. For all i s.t. x̄i ≤ x̄j for some j 6= i, γi(xi) is continuous at xi = x̄i or, equivalently,

λi =
(1− F (xi))

2

(1− F (xi) + xif (xi))
, (17)

So, γi(xi) = xi −
1− (1−F(xi))

2

(1−F(xi)+xif(xi))
−F (xi)

f(xi)
for xi ∈ [0, x̄i].

2. For bidder h1 such that maxj 6=i x̄j < x̄h1 < 1, we have: γh1(x̄h1) > γ−h1
(x̄h1) =

maxj 6=h1 γj(x̄j) or, equivalently, λh1 <
(1−F(xh1))

2

(1−F(xh1)+xh1
f(xh1))

and

xh1 −
1− F (xh1)− λh1

f(xh1)
= max

j 6=h1

x̄2
jf(xj)

1− F (xj) + xjf(xj)
. (18)

Although the proof of Theorem 1 is fairly intricate, it relies on an intuitive observation: if

some bidder i’s virtual value is not continuous at her threshold x̄i, then the seller can attain

a higher payoff by modifying x̄i slightly.

Theorem 1 is consistent both with binding and non-binding budget constraints of any

player i. Particularly, if the budget constraint of bidder i is non-binding, then λi = 0. In

this case, we either have x̄i = 1 or, if the only bidder whose budget constraint is non-binding

is h1, then x̄h1 −
1−F (x̄h1

)

f(x̄h1
)

= maxj 6=h1

x̄2
jf(x̄j)

1−F (x̄j)+x̄jf(x̄j)
, and bidder h1 of type above x̄h1 gets the

good with probability 1 and pays a transfer which is below her budget. Also, from (17) and

(18) it follows that λi > 0 and so the budget constraint of bidder i is binding if x̄i < 1 and

there exists j s.t. x̄i ≤ x̄j. So there can be at most one bidder with threshold x̄ strictly

below 1 whose budget constraint is not binding.

Theorem 1 has two important implications. First, given a profile x̄ = (x̄1, ..., x̄n) equations

(17) and (18) obviously define a profile λ(x̄) uniquely. Importantly, as stated in the following

Corollary, the converse is also true i.e., given a profile λ = (λ1, ..., λn) there is a unique profile

x̄(λ) defined by equations (17) and (18). This result is significant as it allows us to reduce

the number of choice variables from 2n to n.

Corollary 1 Equations (17) and (18) in Theorem 1 define a bijection between the set of

thresholds (x̄1, ..., x̄n) and the set of Lagrange multipliers (λ1, ..., λn).

Next, one can observe from equations (17) and (18) that λi ≤ 1 − F (x̄i) for all i. This

observation is behind the other important implication of Theorem 1 stated below.

Lemma 5 Any solution to the relaxed problem is such that γi(xi) is strictly increasing and

qi(xi) is increasing on [0, x̄i] for all i. Therefore, this solution also solves the full unrelaxed

program.
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We can now establish the following intuitive relationship between budgets and thresholds:

Lemma 6 If mi > mj for some i, j ∈ {1, ..., n}, then in an optimal mechanism x̄i ≥ x̄j.

An immediate implication of this Lemma is that bidder h1, who has the highest threshold

and lowest λ, is in fact the highest-budget bidder 1.

Combining Lemmas 4 and 5 we can now provide explicit expressions for the expected

trading probabilities qi(xi).

Lemma 7 In an optimal mechanism, the expected probability of trading qi(xi) satisfies:∫
x−i∈[0,1]n−1:γi(xi)>max{0,maxj 6=i γj(xj)}

∏
j 6=i

dF (xj) ≤ qi(xi) ≤
∫
x−i:γi(xi)≥max{0,maxj 6=i γj(xj)}

∏
j 6=i

dF (xj)

(19)

The inequalities in (19) hold as equalities for almost all xi ∈ [0, x̄i) and for xi = x̄i if x̄i 6= x̄j

for all j, j 6= i. So the profile (x̄1, ..., x̄n, λ1, ..., λn) uniquely defines the function qi(.) a.e. on

[0, x̄i] and uniquely defines the function
∫ xi

0
qi(s)ds everywhere on [0, x̄i].

Finally, using Lemmas 6 and 7 and Theorem 1 we can formally establish that a sufficient

condition for all budget constraints to be binding is that the highest budget m1 among the

bidders is below the price that the seller posts when she faces a single bidder.

Lemma 8 Suppose that m1 ≤ arg maxp p(1 − F (p)). Then the budget constraints of all

bidders are binding in the optimal mechanism i.e., (10) holds as equality for all i ∈ {1, ..., n}.

To complete the derivation of the optimal mechanism we will make use of the Lagrangian

duality theory (see e.g. Boyd and Vandenberghe (2009) and Bertsekas (2001)). First, let

g(λ) be Lagrange dual function to (15) i.e.:

g(λ) ≡ L(x̄(λ), λ) = max
x̄
L(x̄, λ) = maxx̄

∫
x∈[0,1]n

max{0, max
i=1,...,n

γi(xi)}
∏
i

dF (xi) +
n∑
i=1

λimi.

(20)

Note that x̄(λ) in the definition of g(.) is the optimal threshold profile under a given profile

of multipliers λ and is implicitly defined by the equations in Theorem 1.

Since L(λ, x̄) is linear in λ, by Danskin’s Theorem (Bertsekas (2001), Ch. 1) the function

g(λ) ≡ L(λ, x̄(λ)) = maxx̄ L(λ, x̄) is convex and therefore has a unique minimum. Impor-

tantly, the next Lemma establishes the strong duality property for our problem implying

that its solution can be obtained by minimizing g(λ).
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Lemma 9 The problem of maximizing (15) 8 has strong duality property i.e.,

max
x̄

min
λ
L(x̄, λ) = min

λ
max
x̄
L(x̄, λ)

We prove this Lemma by directly establishing that L(x̄, λ) possesses saddle-point property,

which implies strong duality.9

5 Main Results

Using Lemma 9 we can now derive the solution to our problem by minimizing the Lagrange

dual function g(λ). The result is provided in the next Theorem. To state it, let us introduce

the following notation. For any set J ⊆ {1, ..., n} s.t. i 6∈ J , let Prob.[γi(xi) > maxj∈J γj] =∏
j∈J
∫
xj∈[0,1]: γi(xi)>γj(xj)

dF (xj). Also note that by Lemma 7 the value of
∫ x̄i

0
qi(xi)dxi for

any i is uniquely defined by the vector (x̄, λ). To simplify the exposition we will focus on the

case where all bidders’ budget constraints are binding (by Lemma 8 a sufficient condition

for this is that m1 ≤ arg max p(1− F (p)) which, under monotone hazard rate, is equivalent

to m1 − 1−F (m1)
f(m1)

≤ 0).

Now we can state the following Theorem:

Theorem 2 The optimal profile of threshold values (x̄1, ..., x̄n) is unique and is characterized

by the following necessary and sufficient conditions:

For i such that x̄i 6= x̄j, j 6= i, budget constraint must hold i.e.:

mi = x̄iqi(x̄i)−
∫ x̄i

0

qi(s)ds (21)

For bidders k1, ..., kl that form a cluster C(x̄c) ≡ {i|x̄i = x̄c} with threshold x̄c i.e., x̄k1 =

8It is well know that the primal problem of maximizing (15), maxx̄ L(x̄, λ), is equivalent to the following

one: maxx̄ minλ L(x̄, λ).

9As stated in Boyd and Vandenberghe (2009) p.239., “if x and λ are primal and dual optimal points for

a problem in which strong duality obtains, they form a saddle-point for the Lagrangian. The converse is

also true: If (x, λ) is a saddle-point of the Lagrangian, then x is primal optimal, λ is dual optimal, and the

optimal duality gap is zero.” Notably, the primal problem is not required to be a convex problem for this

result to hold (Boyd and Vandenberghe (2009), p 215). So, in particular, the constraint set in our problem

does not have to be convex.
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... = x̄kl = x̄c 6= x̄j for any j 6∈ {k1, ..., kl}, the following two conditions must hold:10,11

(i)
∑

h∈{1,...,l}

mkh = x̄c
1− F (x̄c)l

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]− l

∫ x̄c

0
qk1(s)ds (22)

(ii) for all r ∈ {2, ..., l − 1}, mk1 + ...+mkr

r
−
mkr+1 + ...+mkl

l − r
≤

x̄c
(

1− F (x̄c)r

r(1− F (x̄c))
− F (x̄c)r

1− F (x̄c)l−r

(l − r)(1− F (x̄c))

)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ] (23)

The proof of Theorem 2 shows that conditions (21)-(23) are equivalent to the first-order

conditions for minimizing the Lagrange dual function g(λ) ≡ L(λ, x̄(λ)), (48) and (49) in the

proof. Since g(λ) is convex, its minimum is unique and (21)-(23) are necessary and sufficient

conditions for it. Therefore, the threshold profile x̄ solving the system (21)-(23) is unique

and constitutes the solution to our mechanism design problem.

In particular, the threshold profile uniquely determines qi(xi) for all i and almost all

xi ∈ [0, x̄i) and qi(x̄i) for all i s.t. x̄i 6= x̄j for all j 6= i according to Lemma 7. If i belongs

to some cluster of bidders with a common threshold x̄c then, given
∫ x̄i

0
qi(xi)dxi, the value

qi(x̄
c) is uniquely defined via the budget constraint of player i. As we explain below, the

first-order conditions (22)-(23) guarantee the feasibility of this choice of qi(x̄
c
i).

Let us now provide more detailed intuition behind Theorem 2. To begin, condition (21)

says that in the optimal mechanism the only necessary and sufficient condition for bidder i

who does not belong to any cluster (i.e. x̄i 6= x̄j for all i 6= j) is that her budget constraint

is binding at her threshold valuation x̄i.

Condition (22) is the aggregate budget constraint for the bidders in a cluster with

threshold x̄c. The probability that one of them gets the good,
∑

r=1,...,l qkr(x̄
c), is equal to

1−F (x̄c)l

1−F (x̄c)
Prob.[γk1(x̄c) > maxj 6∈{k1,...,kl} γj]. This can be shown by summing individual budget

constraints (10) of the bidders in the cluster and comparing the result to (22).

Condition (23) is the feasibility condition for the existence of a cluster with threshold x̄c.

Although it may appear non-transparent, it has a clear and intuitive economic interpretation.

Its left-hand side is the difference between the average budget of the richest r bidders and

the average budget of the poorest l − r bidders in the cluster. For the cluster to exist, this

10Note that without loss of generality we may assume here that indexes k1, ..., kl are ordered according to

the budgets i.e., k1 < k2... < kl−1 < kl and mk1 ≥ mk2 ... ≥ mkl−1
≥ mkl . This is so because when (23)

holds for this ordering, it also holds for any alternative ordering.

11Note that by Lemma 4 qk1(x) = ...qkl(x) for all x, since bidders {k1, ..., kl} have the same threshold x̄c

and therefore, by Theorem 1, have the same λ and hence the same “virtual values” γ(.).
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difference cannot be too large, for otherwise it would be impossible to satisfy the necessary

condition (10) that budget constraints of all bidders in the cluster are binding when they have

threshold values x̄c. Precisely, this difference cannot exceed the largest possible difference

between the average transfers paid by the bidders in these two groups with valuations above

the threshold x̄c. The latter difference is equal to the maximal difference between the average

expected gross surpluses of buyers with valuations x̄c in these two groups (because the net

surplus of each bidder with value x̄c is the same and equal to
∫ x̄c
rc
qk1(s)ds), which is the

right-hand side of (23). Indeed, the maximal average gross surplus of the richest r bidders

with valuation x̄c is equal to x̄c times the maximal average probability of trading in this

group. The latter is a product of the probability Prob.[γk1(x̄c) > maxj 6∈{k1,...,kl} γj] that no

bidder outside the cluster has a virtual value exceeding the virtual value of a cluster member

of type x̄c, γk1(x̄c), and the average probability that at least one among these r bidders has

value of at least x̄c, 1−F (x̄c)r

r(1−F (x̄c))
. Similarly, the minimal average gross surplus of the poorest

l−r bidders with valuation x̄c is equal to x̄c times the minimal average probability of trading

for that group. The latter probability is a product of Prob.[γk1(x̄c) > maxj 6∈{k1,...,kl} γj] and

the average probability that at least one among l − r bidders has value of at least x̄c while

the values of the other r bidders in the cluster are below x̄c, F (x̄c)r 1−F (x̄c)l−r

(l−r)(1−F (x̄c))
.

To summarize, when conditions (22) and (23) hold, then the vector of trading probabilities

“at the top” (qk1(x̄c), ..., qkl(x̄
c)) of the bidders in the cluster C(x̄c) defined by the budget

constraint mkj = x̄cqkj(x̄
c)−

∫ x̄c
0
qkj(s)ds is feasible.

In fact, to highlight that conditions (22) and (23) are feasibility constraints for our

mechanism and to connect them to more familiar notions of feasibility of expected (“reduced

form”) trading probability functions in an auction, in particular, the ones in Border (1991)

and (2007), note the following. If we multiply both sides of inequality (23) by (l − r), add

them to (22) and then simplify using the budget constraint mkj = x̄cqkj(x̄
c) −

∫ x̄c
0
qkj(s)ds

then we obtain:∑
j=1,...,h

qkj(x̄
c) ≤ 1− F (x̄c)h

1− F (x̄c)
Prob.[γk1(x̄c) > max

i 6∈{k1,...,kl}
γi] for all h ∈ {1, ..., l} (24)

On the other hand, subtracting (23) multiplied by r from (22) and using the same budget

constraint yields:∑
j=h,...,l

qkj(x̄
c) ≥ F (x̄c)h−1 1− F (x̄c)l−h+1

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj] for all h ∈ {1, ..., l}

(25)

Condition (24) says that the probability of assigning the good to any subset of bidders from

the cluster C(x̄c) with values above x̄c cannot exceed the probability that a bidder from
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this subset has value in [x̄c, 1] and bidders outside the cluster have lower virtual values than

γk1(x̄c) = ... = γkl(x̄
c). Clearly, this feasibility condition - which is similar to the condition

in Theorem 3 of Border (2007)- must hold for every subset of size h ∈ {1, ..., l} of bidders in

a cluster, but it is sufficient to check it for the subset including h richest bidders k1, ..., kh

since they have higher trading probabilities at the threshold i.e., qk1(x̄c) ≥ ... ≥ qkl(x̄
c).

Similarly, (25) provides a lower bound on the probability of assigning the good to any

subset of bidders in a cluster. Specifically, fixing an arbitrary subset of bidders of size l−h+1

in the cluster C(x̄c), the good should be assigned to a bidder from this subset when at least

some bidder in it has value in [x̄c, 1], the rest of the bidders in the cluster have values below

x̄c, and the bidders outside the cluster have lower virtual values than γkj(x̄
c). It is sufficient

that this condition hold for the subsets of every size composed of the bidders with the lowest

budgets because they have lower probabilities of trading qkj(x̄
c) “at the top.”

5.1 Top and Budget-Handicap Auctions

In this section, we use the results established above to characterize qualitative properties of

the optimal mechanism and show how these properties depend on the profile of budgets.

Qualitatively, we will distinguish between two kinds of optimal mechanisms. A mecha-

nism of the first kind is called a “top auction.” In a top auction all thresholds are equal

i.e., x̄1 = ... = x̄n = x̄t, and all bidders with valuations below x̄t are treated symmetrically:

any bidder with valuation in [rt, x̄t) pays the same transfer and gets the good if she has the

highest valuation, where the “reservation value” rt is given in Definition 1. Bidders with

valuations below rt are excluded. But, because the bidders have unequal budgets, the seller

discriminates between them “at the top:” a richer high valuation bidder gets the good with

a higher probability and pays a higher transfer than a poorer high valuation bidder.

The mechanism of the second kind is called “budget-handicap auction.” In a “budget-

handicap auction” the mechanism designer sets different thresholds for different bidders

or groups of bidders. There may exist clusters of bidders with the same threshold, but

not all bidders belong to the same cluster. In this mechanism, there are two types of

price discrimination. First, a richer bidder with a value above her threshold has a higher

probability of trading than a poorer bidder with a value above her respective threshold. This

type of price discrimination applies to any two bidders with different budgets, irrespectively

of whether they belong to the same cluster or different clusters.

The second type of price discrimination works in the opposite direction. A poorer bidder

with a lower value (below her threshold) has a higher probability of trading and pays a higher
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transfer than a richer bidder with the same value. So richer bidders are handicapped, and

poorer bidders are given an advantage at lower valuations via a lower reserve price and a

higher probability of trading. This motivates the use of the term “budget-handicap.”

Which mechanism is offered by the designer - a top auction or a budget-handicap auction-

ultimately depends on the budget profile. The designer offers a top auction whenever it is

feasible, namely, when the budget differences across buyers are not too large. However, when

these differences are large, price-discrimination only at the “top” is no longer feasible, as all

budget constraints cannot be made binding at the same threshold. So, different thresholds

have to be set across bidders, and the seller has to handicap richer bidders at lower valuations.

We will start from the “top auction” which is defined as follows:

Definition 1 A “top auction” for n bidders with budgets m1, ...mn is a mechanism charac-

terized by a common threshold x̄t = x̄1 = ...x̄n uniquely solving∑
i=1,...,n

mi = x̄t
1− F (x̄t)n

1− F (x̄t)
− n

∫ x̄t

rt

F (s)n−1ds, (26)

with common reservation value rt defined by rt =
1−F (rt)− (1−F (x̄t))2

1−F (x̄t)+x̄tf(x̄t)

f(rt)
, and expected trading

probabilities qi(xi) = F (xi)
n−1 for all xi ∈ [r, x̄t) and qi(x̄

t) satisfying:

mi = x̄tqi(x̄
t)−

∫ x̄t

rt

F (s)n−1ds (27)

Observe that equation (26) defining the common threshold x̄t is the equivalent of (22) for

the case of the top auction where all bidders belong to a single cluster. The solution to (26)

is unique because its right-hand side is increasing in xt,12 is equal to zero when xt = 0, and

exceeds
∑

imi when xt = 1, since by assumption m1 ≤ 1−
∫ 1

r:r− 1−F (r)
f(r)

=0
F n−1(x)dx.

Note that (26) and (27) together imply that∑
i=1,...,n

qi(x̄
t) =

1− F (x̄t)n

1− F (x̄t)
.

So, with probability 1 the good is given to a bidder with value above the threshold if there

is at least one such bidder.

The following Theorem, which is a direct consequence of Theorem 2, shows that the “top

auction” is optimal whenever it is feasible i.e., whenever the feasibility condition (23) in

Theorem 2 adapted to the top auction is satisfied.

12Indeed, the derivative of the right-hand side w.r.t x̄t is equal to 1−F (x̄t)n

1−F (x̄t) + x̄tf(x̄t)

(1−F (x̄t))2
(1+(n−1)F (x̄t)n−

nF (x̄t)n−1)− nF (x̄t)n−1 + nF (r(x̄t))n−1 dr(x̄
t)

dx̄t , which is positive, in particular, because dr(x̄t)
dx̄t > 0.
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Theorem 3 The unique optimal mechanism is a “top auction” with a common threshold x̄t

solving (26) if and only if for every k = 1, 2, ..., n− 1 we have:

m1 + ...+mk

k
− mk+1 + ...+mn

n− k
≤

x̄t
(

1− F (x̄t)k

k(1− F (x̄t))
− F (x̄t)k

1− F (x̄t)n−k

(n− k)(1− F (x̄t))

)
(28)

As the discussion following Theorem 2 points out, condition (28) (equivalently, condition (23)

in Theorem 2), says that the difference between the average budget of the richest k bidders

and the average budget of the poorest n− k bidders does not exceed the maximal difference

between the average expected surpluses of these two groups. This allows to allocate the good

“at the top” in such a way that all budget constraints hold at the threshold x̄t.

The top auction allocates the good efficiently when all buyers’ valuations lie in [rt, x̄
t].

The reservation value rt is below the reservation value in the optimal auction without budget

constraints r, which satisfies r − 1−F (r)
f(r)

= 0. This is so because with budget constraints

the tradeoff between higher efficiency at lower values and leaving greater surplus to the

bidders with higher values shifts towards the former, since the bidders with values above

their thresholds pay the whole budgets, so no more surplus can be extracted from them.

However there is an additional inefficiency compared to the standard optimal auction: when

several bidders have valuations above x̄t the good is allocated randomly among them, with

probabilities increasing in their budgets. So a bidder with a lower value in [x̄t, 1] may end

up getting the good even if another bidder has a higher value.

The following Corollary of Theorem 3 shows that the seller’s expected revenue in the top

auction depends only on the aggregate budget
∑

imi, and not on the distribution of the

budgets across the bidders:

Corollary 2 Suppose that the top auction is the optimal mechanism under budget profiles

(m1, ...,mn) and (m′1, ...,m
′
n) such that

∑
imi =

∑
im
′
i. Then the optimal threshold x̄t and

the expected seller’s revenue is the same in both cases.

As an application of this Corollary, suppose first that all bidders have the same budgets.

So the seller offers a top auction which in this case coincides with the optimal mechanism of

Laffont and Robert (1996). Then the nature of the optimal mechanism and its profitability

for the seller do not change after a sufficiently small budget redistribution among the bidders

that does not violate (28).
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Top auction can be implemented via an indirect mechanism which combines an all-pay

auction with a lottery. Specifically, each bidder is offered a choice between the former and

the latter. If bidder i chooses the lottery, she pays mi for a “lottery ticket” which wins her

the good with probability qi(x̄
t). If i chooses the all-pay auction she submits a bid bi and

gets the good if she is the highest bidder, her bid is above the “reserve price,” and no bidder

has chosen to take part in the lottery. The reserve price in the all-pay auction is equal to

ti(r
t) = rtF n−1(rt). This mechanism implements the same allocation as the top auction with

optimal threshold x̄t. Indeed, it is easy to see that the optimal strategy of bidder i is to buy

the lottery ticket if xi ∈ [x̄t, 1]; to bid bi(xi) = xiF
n−1(xi)−

∫ xi
rt
F n−1(s)ds if xi ∈ [rt, x̄t]; and

not to participate if xi < rt. Note that this mechanism is envy-free since any two bidders

i and j get equal payoffs if xi = xj ∈ [0, x̄t], while richer bidder i gets a higher payoff than

poorer bidder j when xi = xj > x̄t, but j cannot afford i’s lottery ticket which costs mi.

Now suppose that the feasibility condition (28) fails. In this case, the seller has to

use additional tools to discriminate between the bidders and, in particular, set different

thresholds for them. Naturally, lower-budget bidders have lower thresholds (Lemma 6),

although there may still exist some clusters of bidders with the same threshold. Richer

bidders with valuations above their higher thresholds get the good with a higher probability

and pay more than poorer bidders with valuations above their lower thresholds.

Importantly, there is another type of “price discrimination” in this second kind of mech-

anism, which we call “budget handicap auction:” a poorer bidder with a low value has a

higher probability of trading and pays a higher transfer than a richer bidder with the same

value. This handicapping of higher-budget bidders creates a stronger competition for them

from lower-budget bidders, and extracts higher payments from the former when they have

high values. It also unavoidably increases inefficiency. Formally, we have:

Theorem 4 Suppose that (28) fails for some k. Then the optimal auction is a “budget

handicap auction” which is uniquely defined by a vector of thresholds (x̄1, ..., x̄n) s.t. x̄i ≥ x̄i+1

for all i ∈ {1, .., n− 1}, with strict inequality for at least some i.

In budget handicap auction, if x̄i > x̄j then ri > rj and qi(x) < qj(x) for all x ∈ [rj, x̄j].

If bidders k1, ...kl, k1 ≤ k2... ≤ kl form a cluster with threshold x̄c, then these bidders have

the closest budgets i.e., there exists j ∈ {0, n− l} such that kh = j + h for all h ∈ {1, ..., l}.

By Theorem 2, the vector of thresholds (x̄1, ..., x̄n) is uniquely defined by conditions (21)-

(23). The most challenging part in applying this result and computing the optimal “budget

handicap” auction is determining which groups of bidders form clusters with common thresh-

olds. Theorem 4 simplifies this task by showing that any cluster contains only “adjacent”
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bidders with the smallest budget differences. So the number of possible cluster configura-

tions is 2n−1, and potentially one may have to go over all of them to compute the solution.

Our results provide a tractable method to check whether a particular cluster configuration

is optimal. For example, the optimal mechanism is a budget-handicap auction without any

clusters if the following system of n equations has a solution (x̄1, ..., x̄n) satisfying x̄i > x̄i+1

for all i ∈ {1, ..., n− 1}:

m1 = x̄1 −
∫ x̄1

0

∫
x−1:γ1(x1)>max{0,maxj 6=1 γj(xj)}

∏
j 6=1

dF (xj)dx1

mi = x̄i

∫
x−i:γi(x̄i)>max{0,maxj 6=i γj(xj)}

∏
j 6=i

dF (xj)−
∫ x̄i

0

∫
x−i:γi(xi)>max{0,maxj 6=i γj(xj)}

∏
j 6=i

dF (xj)dxi

(29)

Similarly, we can write down necessary and sufficient conditions for the optimality of any

other cluster configuration. In the next section we will consider an example with three

bidders and exhibit conditions for optimality of various cluster configurations in that case.

As in the case of the top auction, the cluster configuration in the budget-handicap auction

and the seller’s revenue remain robust to certain sufficiently small redistributions of the

budgets, as the following Corollary demonstrates.

Corollary 3 Suppose that under budget profile (m1, ...,mn) the optimal mechanism is a

budget-handicap auction with thresholds (x̄1, ..., x̄n). Consider a budget profile (m′1, ...,m
′
n)

such that |mi −m′i| is sufficiently small for all i and the aggregate budget of any cluster of

bidders with a common threshold under (m1, ...,mn) is the same under both budget profiles.13

Then the optimal mechanism under (m′1, ...,m
′
n) is a budget-handicap auction with the

same threshold profile and the same expected seller’s revenue as under profile (m1, ...,mn).

The implementation of a budget-handicap auction via an indirect bidding mechanism is

similar to that for the top-auction. As in the latter, bidder i is offered a choice between

participating in an all-pay auction (with a handicap) and buying a lottery ticket that costs

mi and wins the good with probability qi(x̄i). Bidder i chooses the lottery if her valuation

exceeds x̄i and submits a bid in the auction otherwise. But, unlike in the top auction, the all-

pay auction is not symmetric since richer bidders now have to be handicapped. Specifically,

bidder i with threshold x̄i participating in this auction gets the good when her bid: (i) exceeds

the bid of any richer bidder j with a higher threshold x̄j lowered by a certain margin; (ii)

13This condition means, in particular, that the budget of a bidder whose threshold is different from the

threshold of any other bidder under (m1, ...,mn) must remain unchanged.
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exceeds the bid of a poorer bidder h with a lower threshold x̄h by a certain margin. These

margins depend both on the bidders’ thresholds and type distribution.14

In the remainder of this section, we will focus on the properties of the seller’s expected

payoff function. Recall that by Lemma 9 (strong duality), the seller’s expected profit in

the optimal mechanism is given by the minimum of the dual Lagrange function g(λ) in (20)

which can be written as a function of the vector of budgets (m1, ...,mn) in the following way:

π(m1, ...,mn) = min
λ

{∫
x∈[0,1]n

max{0, max
i=1,...,n

γi(xi, λ)}dF (x) +
n∑
i=1

λimi

}
. (30)

Since π(m1, ...,mn) is a pointwise minimum in λ of a function affine in (m1, ..mn), it is

concave in the vector (m1, ...,mn).15

Concavity of π(.) has the following consequences for the seller’s revenue:

Theorem 5 Suppose that the aggregate budget of all bidders is fixed i.e.
∑

imi = M .16

Then the seller gets the maximal payoff in the optimal mechanism when all bidders’

budgets are equal i.e., mi = M
n

for all i = 1, ..., n.

Moreover, consider two budget profiles (m1, ...,mn) and (m′1, ...,m
′
n), ordered from the

highest to the lowest, and suppose that
∑n

j=1 mj =
∑n

j=1m
′
j and

∑n
j=imj ≤

∑n
j=im

′
j for all

i ∈ {2, ..., n}. Then π(m1, ...,mn) ≤ π(m′1, ...,m
′
n).

Intuitively, the second part of the Theorem says that if budget profile (m1, ...,mn)

is a mean preserving spread of the profile (m′1, ...,m
′
n), in the sense of Rothschild and

Stiglitz (1970), then the seller’s expected revenue is greater under the latter than un-

der the former. At the same time, Corollaries and 2 and 3 show that the inequality

π(m1, ...,mn) ≤ π(m′1, ...,m
′
n) is strict only if the difference between the two budget profiles

is sufficiently large that the sets of thresholds under the two budget profiles are different.

14The mapping of bids into the allocation of the good is defined via the formula for the transfers ti(xi) =

qi(xi)xi−
∫ xi

ri
qi(s)ds. In the optimal budget-handicap mechanism ti(xi) is strictly increasing in xi on [ri, x̄i)

and therefore bi uniquely defines xi on this interval via bi = ti(xi). Thus, when i submits bid bi = ti(xi)

and bidder j 6= i submit a bid bj = tj(xj), bidder i gets the good whenever γi(xi) ≥ maxj 6=i γj(xj) which

occurs with probability qi(xi) from i’s point of view.

15Note that this is true even if some bidder i’s budget constraint is not binding. In this case λi = 0 and

π(m1, ...,mn) does not depend on mi.

16To make this result non-trivial M has to be sufficiently small. In particular, we will assume that

M ≤ npm where pm is a monopoly price i.e., pm = arg maxp p(1− F (p)).
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6 Examples with Uniform Type Distribution.

6.1 Two Bidders.

We have described the qualitative properties of the optimal mechanism for two bidders in

section 3. Below we compute its exact parameters under uniform type distribution on [0, 1].

Starting with the top auction, equation (26) defining common threshold value x̄t becomes:

m1 +m2 = x̄t +
(
x̄t
)2 −

(
x̄t
)3

+
(x̄t)

4

4

Condition (28) for the feasibility of the top auction simplifies to m1 −m2 ≤ x̄t(1 − x̄t). If

it holds, then by Lemma 7 qi(xi) = 0 if xi < x̄t − (x̄t)
2

2
; qi(xi) = xi if xi ∈ [x̄t − (x̄t)

2

2
, x̄t);

qi(xi) = 1+x̄t

2
+

mi−mj

2
if xi ≥ x̄t.

So, q1(x) and q2(x) jump upwards at x = x̄t, except in the borderline case m1 −m2 =

x̄t(1−x̄t) where q1(x) jumps to 1 at x̄t, and q2(x) is continuous at x̄t, with q2(x̄t) = F (x̄t) = x̄t.

If m1−m2 > x̄t(1− x̄t), then the optimal mechanism is a budget-handicap auction with

thresholds x̄1 and x̄2 such that x̄1 > x̄2. Then the reservation value of bidder i (where

her virtual value is zero) satisfies ri = x̄i − x̄2
2

2
, i ∈ {1, 2}, while by Lemma 7, q1(x̄1) = 1,

q2(x̄2) = F (x̄1) = x̄1, and for xi ∈ [x̄i − x̄2
2

2
, x̄i):

qi(xi) =

∫
γi(xi)>γj(s)

ds =

∫
xi−x̄i>s−x̄j

ds = xi − x̄i + x̄j for i, j ∈ {1, 2} i 6= j.

So q1(x1) increases continuously on [x̄1 − x̄2
2

2
, x̄1) and jumps at x̄1 from x̄2 to 1, while q2(x2)

increases continuously on [x̄2− x̄2
2

2
, x̄2] to its maximum x̄1. Note that q1(x)− q2(x) = 2(x̄2−

x̄1) < 0 for x ∈ [x̄1 − x̄2
2

2
, x̄2], as buyer 1 is handicapped in the intermediate range of values.

By Theorem 2 the thresholds x̄1 and x̄2 solve the following equations:

m1 = x̄1 −
∫ x̄1

r1

∫
γ1(x1)>γ2(x2)

dx2dx1 = x̄1 −
x̄3

2

2
+
x̄4

2

8
(31)

m2 = x̄2x̄1 −
∫ x̄2

r2

∫
γ2(x2)>γ1(x1)

dx1dx2 = x̄1x̄2 − x̄1
x̄2

2

2
+
x̄4

2

8
(32)

By Theorem 1, λ2 = (1 − x̄2)2 and λ1 = 1 − 2x̄1 + x̄2
2. Thus, λ1 > 0 and hence

bidder 1’s budget constraint is binding if and only if the solutions to (31) and (32) are

such that x̄1 <
1+x̄2

2

2
. Substituting x̄1 =

1+x̄2
2

2
into (31) and (32) yields the necessary and

sufficient condition for binding budget constraint of bidder 1: consider x̄2 that solves (32)

i.e., m2 =
x̄2+x̄3

2

2
− x̄2

2

4
− x̄4

2

8
. Then m1 ≤ 1+x̄2

2

2
− x̄3

2

2
+

x̄4
2

8
.
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Figure 3: Region of Optimality of The Top Auction

(a) View 1 (b) View 2

If the latter inequality fails, then bidder 1’s budget constraint is never binding and so λ1 =

1− 2x̄1 + x̄2
2 = 0 and λ2 = (1− x̄2)2. Thus, x̄1 =

1+x̄2
2

2
, where x̄2 solves m2 =

x̄2+x̄3
2

2
− x̄2

2

4
− x̄4

2

8
.

Substituting these values into the right-hand side of (31) yields
1+x̄2

2

2
− x̄3

2

2
+

x̄4
2

8
as the transfer

paid by bidder 1 of type x ∈
[

1+x̄2
2

2
, 1
]
, which is less than m1 in this case.

6.2 Three-Bidder Mechanism Under the Uniform Distribution

The optimal mechanism with three bidders can be of four kinds:

• “top-auction:” x̄1 = x̄2 = x̄3 = x̄t;

• “budget-handicap auctions” with:

– “top cluster:” x̄1 = x̄2 > x̄3.

– “lower cluster:” x̄1 > x̄2 = x̄3.

– “no clusters:” x̄1 > x̄2 > x̄3.

Interestingly, each of these mechanisms is optimal for a set of budgets of a positive measure,

as illustrated in Figures 3-6.

To save space, the conditions on the budgets for the optimality of these mechanisms

and the details of the derivations are provided in the online Appendix available at http :

//www.severinov.com/bca uniform.

Figure 6 depicts the set of budgets for which the optimal mechanism has no clusters.
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Figure 4: Region of Optimality of the Budget Handicap Auction with Top Cluster

(a) View 1 (b) View 2

Figure 5: Region of Optimality of the Budget Handicap Auction with Lower Cluster

(a) View 1 (b) View 2

Figure 6: Region of Optimality of the Budget Handicap Auction with No Clusters

(a) View 1 (b) View 2
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7 Constrained-Efficient Mechanism

In this section, we will characterize the constrained efficient mechanism which maximizes

the expected social surplus, rather than the expected seller’s revenue. It is well-known that

without budget constraints VCG mechanism attains full efficiency under private values. But

with budget constraints, VCG mechanism does not work since the bidders’ willingness to

pay cannot be fully translated into their bids. High-value bidder types can no longer afford

to pay the value of the externality that they impose on the others.17

The constrained-efficient mechanism in our set-up is qualitatively similar to the optimal

one, so we will omit the details and only highlight the main elements and the differences

between these two mechanisms. First off, the constrained-efficient mechanism maximizes

the expected social surplus
∑n

i=1

∫ 1

0
qi(xi)xidF (xi) subject to the same constraints (3)-(6)

as the optimal mechanism. Repeating the steps of the analysis of the optimal mechanism,

and in particular, imposing the constraint (10) on the objective, and letting xei denote the

threshold valuation at which bidder i’s budget constraint becomes binding, and λei denote

the corresponding Lagrange multiplier yields the following Lagrangian:

Le =
n∑
i=1

∫ 1

0

qi(xi)xidF (xi)− λei
(
qi(x

e
i )x

e
i −

∫ xei

0

qi(x)dx−mi

)
=

n∑
i=1

∫ x̄ei

0

qi(xi)

(
xi +

λei
f(xi)

)
dF (xi) +

1∫
x̄ei

qi(x̄i)

(
E(xi|xi ≥ x̄ei )−

λeix
e
i

1− F (x̄ei )

)
dF (xi) + λeimi


(33)

17One route towards efficiency in our set-up is to have the principal subsidize the bidders. Yet, in important

real-world situations such approach is infeasible or politically unacceptable. In the course of large-scale

privatization in Eastern Europe, the governments have been concerned with efficiency of asset allocation to

spur the economic growth. However, these governments have been experiencing financial problems that made

such subsidization practically infeasible. Although the governments in high-income North American and

European countries possess sufficient financial resources, subsidizing the bidders in auctions of government

assets would arguably be very unpopular and politically unacceptable. In fact, public discontent and political

embarrassment have followed the results of second-price auctions where the prices paid by the winner i.e.,

the second-highest bids, were significantly below the winners’ bids, as it was seen as a loss of public revenue.

McMillan (1994) provides several examples illustrating this from spectrum auctions in New Zealand and

Australia. Not surprisingly, it is hard to find examples of privatization auctions in which public funds are

used to subsidize or finance bidders. Another and formal argument against subsidizing or financing bidders

is provided by Zheng (2001), albeit in a different framework with common values and first-price auctions.

He shows that, when seller provides financing at low interest rates, low budget bidders bid more and then

declare bankruptcy with a sufficiently high probability that overall hurts the seller.
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This Lagrangian function is the counterpart of (12) for the optimal mechanism. Hence, (33)

yields the same modified Lagrangian (13) for the constrained efficiency problem, albeit with

the new virtual values γei (xi):

γei (xi) =

{
xi +

λei
f(xi)

, if xi < xei ,

E(xi|xi ≥ x̄ei )−
λeix

e
i

1−F (xei )
, if xi ≥ xei .

(34)

Theorems 1 -4 and Lemma 7 apply to the constrained-efficient mechanism verbatim.

Particularly, by Theorem 1 the virtual values γei (.) must be continuous at x̄ei , and there

is a 1-to-1 relationship between the multipliers vector (λe1, ..., λ
e
n) and the thresholds vector

(x̄e1, ..., x̄
e
n). Namely, for all i ∈ {2, ..., n} and for i = 1 if x̄e1 = x̄e2 we have:

λei =
(E(xi|xi ≥ x̄ei )− x̄ei ) (1− Fi(x̄ei ))f(x̄ei )

x̄eif(x̄ei ) + 1− Fi(x̄ei )
.

When x̄1 > x̄2, then

λe1 = f(x̄e1)(γe2(x̄e2)− x̄e1).

From these expressions the virtual values γei (x) are easily obtained.

By Theorem 2, constrained-efficient mechanism is unique and is characterized by the

threshold profile (x̄e1, ..., x̄
e
n) satisfying the first-order conditions of this Theorem. Conse-

quently this mechanism, as the optimal one, is either a top auction or a budget-handicap

auction, depending on the budget profile. Also, by Theorem 5, under fixed aggregate budget

maximal efficiency is attained when all bidders have equal budgets.

However, for each budget profile the parameters of the constrained-efficient mechanism

are different from the optimal one, because the “virtual values” γei differ from the virtual

values for the optimal mechanism in (14). Consider first the top auction. The equation

determining the common threshold in the constrained-efficient top auction, x̄te, is:∑
i=1,...,n

mi = x̄te
1− F (x̄te)n

1− F (x̄te)
− n

∫ x̄te

0

F (s)n−1ds (35)

Equation (35) implies that xte is increasing in
∑

i=1,...,nmi, while its counterpart for the

optimal mechanism, equation (26), implies that xt is increasing in
∑

i=1,...,nmi. However,

under the same budget profile we have xte < xt because the reservation value r is positive

(zero) in the optimal (constrained-efficient) top auction. Since the same family of inequalities

(28) must be satisfied in both optimal and constrained-efficient mechanisms and the right-

hand side of (28) is non-monotone in its argument, it follows that under the same budget

profile top-auction may be a solution to one of the problems, but not to the other one. In fact,

as we illustrate below by an example, the respective sets of budget profiles are non-nested.
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Similarly, the constrained-efficient mechanism is a handicap auction when the budgets

are small but sufficiently different so that (28) fails, and the corresponding budget set is

non-nested with the budget set under which the optimal mechanism is a handicap auction.

However, the lowest budget under which all budget constraints are non-binding in the optimal

mechanism is higher than in the efficient mechanism. This is so because in the efficient

mechanism this budget level is equal to 1 −
∫ 1

0
F n−1(s)ds, while in the optimal mechanism

it equals 1−
∫ 1

r
F n−1(s)ds where r is positive and solves r − 1−F (r)

f(r)
= 0.

To conclude, the constrained-efficient mechanism does not attain full efficiency. In the top

auction inefficiency arises because all bidders with valuations above the common threshold

x̄te are tied. In the budget-handicap auction, a richer bidder is handicapped and loses in

competition with poorer bidders if the latter have lower valuations by some margin.

7.1 Example of Constrained-Efficient Mechanism

In this subsection we compute the constraint-efficient mechanism for two bidders whose types

are distributed uniformly on [0, 1] and who have budgets m1 and m2, respectively.

First, neither budget constraint is binding and the constrained-efficient mechanism is a

standard all-pay auction if m2 ≥ 1
2
, since in this case m2 ≥ 1−

∫ 1

0
sds = 1

2
.

Now suppose that m2 ≤ 1
2
. Let us first consider top auction. Using (35) to compute

the threshold x̄te and checking the necessary conditions in (28), yields that the constrained-

efficient mechanism is a top auction with threshold x̄te = m1 +m2 if m1 ≤
√

2m2 −m2.

Now suppose that m1 >
√

2m2 − m2 and m2 ≤ 1
2
. Then the solution is a budget-

handicap auction. First, let us explore the budget-handicap auction with two binding budget

constraints. In this case, x̄e2 < x̄e1 < 1, λe2(x) =
(1−x̄e2)2

2
, λe1 = −x̄e1+x̄e2+

(1−x̄e2)2

2
= −x̄e1+

1+(x̄e2)2

2
.

So γe2(x) = x2 +
(1−x̄e2)2

2
for x ≤ x̄e2, γe1(x) = x1 − x̄e1 +

1+(x̄e2)2

2
for x < x̄e1, γe1(x̄e1) = 1

2
+

1+x̄e1(x̄e1−(x̄e2)2)

2(1−x̄e1)
>

1+(x̄e2)2

2
. Using Lemma 7 we can now compute the thresholds x̄e1 and x̄e2 in

the budget-handicap auction:

m1 = x̄e1 −
∫
x1∈[0,x̄e1)

q1(x1)dx1 = x̄e1 −
∫
x1∈[0,x̄e1)

∫
γe1(x1)>γe2(x2)

dx2dx1 = x̄e1 −
(x̄e2)2

2
(36)

m2 = x̄e2x̄
e
1 −

∫
x2∈[0,x̄e2)

q2(x2)dx2 = x̄e2x̄
e
1 −

∫
x2∈[0,x̄e2)

∫
γe2(x2)>γe1(x1)

dx1dx2 =
(x̄e2)2

2
(37)

Solving (36) and (37) yield thresholds x̄e1 = m1 +m2 and x̄e2 =
√

2m2 in the budget-handicap

auction when both budget constraints are binding, which is true when λe1 = −x̄e1+
1+(x̄e2)2

2
> 0.

This inequality is equivalent to m1 <
1
2

given that x̄e1 = m1 +m2 and x̄e2 =
√

2m2.
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Figure 7: Constrained-Efficient and Optimal Mechanisms

(a) Constrained-Efficient Mechanism. (b) Constrained-Efficient vs Optimal

Finally, if m1 ≥ 1
2
≥ m2, then the budget constraint of bidder 1 is no longer binding

so (36) does not hold and λ1 = −x̄e1 +
1+(x̄e2)2

2
= 0. Using the latter equality and (37) we

obtain x̄e1 = 1
2

+m2, x̄e2 =
√

2m2, and the maximal transfer paid by bidder 1 with valuation

in
[

1
2

+m2, 1
]

is equal to x̄e1 −
(x̄e2)2

2
= 1

2
.

To summarize, the constrained-efficient mechanism in this example is:

(i) A standard symmetric all-pay auction with zero reservation value for each bidder and

non-binding budget constraints if m2 ≥ 1
2
.

(ii) Top auction with zero reserve and threshold xte = m1 +m2 if m1 ≤
√

2m2 −m2 and

m2 ≤ 1
2
.

(iii) Budget-handicap auction with both budget constraint binding and thresholds x̄e1 =

m1 +m2 and x̄e2 =
√

2m2 if
√

2m2 −m2 < m1 <
1
2
.

(iv) Budget-handicap auction in which only the budget constraint of bidder 2 is binding,

with thresholds x̄e1 = 1
2

+m2 and x̄e2 =
√

2m2, if m1 ≥ 1
2
≥ m2.

Figure 7a depicts how constrained-efficient mechanism depends on the budgets. Figure

7b highlights budget regions in which the constrained-efficient (listed first) and optimal

mechanisms (listed second) are different. Specifically, these differences are as follows:

Area 1: All-pay auction vs. budget- handicap auction with only m2 binding;

Area 2: Budget-handicap Auction with m2 binding only vs. budget-handicap auction

with both budget constraints binding;

Area 3: All-pay or handicap auction vs. Top auction;

Area 4: Top auction vs Budget-handicap auction;
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Area 5: top auction is both constrained-efficient and optimal mechanism.

8 Conclusions

In this paper, we have characterized the optimal and the constrained-efficient mechanisms

when the bidders have commonly known and unequal budgets. We have demonstrated that

the designer should use either a “top auction” mechanism of a budget-handicap auction. The

former is used when budget differences are small. In this mechanism, the designer discrim-

inates between the bidders only when they have high valuations exceeding an endogenous

common threshold at which all budget constraints become binding. Above this threshold

richer bidders are awarded the good with a higher probability than poorer bidders.

When budget differences are sufficiently large, the designer has to use a “budget-handicap”

auction in which the valuation thresholds at which budget constraints become binding dif-

fer across bidders. In addition to discriminating between bidders who have valuations, this

mechanism also discriminates between bidders with low valuations favoring low-budget bid-

ders. This feature of the budget-handicap auction provides justification for favoring smaller

or minority-owned businesses in public procurement and allocation mechanism, such as spec-

trum auctions where bidders often do have known and asymmetric budget constraints.

Our mechanisms have features of an all-pay auction, since a bidder always pays her bid.

It would be interesting to consider a modification of our set-up and consider mechanisms in

which a bidder pays only when (s)he gets the good. We leave this issue for future research.

One other interesting qualitative property of the optimal and constrained-efficient mech-

anisms emerges from our analysis of the two bidder case. There, we show that when one

bidder has a significantly larger budget than the other, the mechanism has “buy-it-now”

features. Generalizing this result to a more general set-up with many bidders is another

extension which we leave for future research.
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9 Appendix A: Proofs

Proof of Theorem 1: The proof of the Theorem relies on the following Lemma:

Lemma 10 The following cannot hold in the optimal mechanism for any i s.t. x̄i < 1:

(a) γ−i (x̄i) > γi(x̄i), and the set Ai(λ, x̄)= {x−i ∈ [0, 1]n−1 : γi(x̄i) ≤ max{0,maxj 6=i γj(xj)}
< γ−i (x̄i)} has a positive measure, where (λ, x̄)= (λ1, ..., λn, x̄1, ..., x̄n).

(b) γi(x̄i) > γ−i (x̄i), and the set Bi(λ, x̄)= {x−i ∈ [0, 1]n−1 : γ−i (x̄i) < max{0,maxj 6=i γj(xj)}
≤ γi(x̄i)} has a positive measure.

Proof of Lemma 10:

To prove the Lemma, we will use the first-order conditions of objective in (15) with

respect to x̄i. Although it may not possess a derivative with respect to x̄i because of max

operator in its second term, it does possess left- and right- derivatives which we denote by
∂−L
∂x̄i

and ∂+L
∂x̄i

, respectively. Then since x̄i < 1, the following conditions must hold: ∂+L
∂x̄i
≥ 0

and ∂−L
∂x̄i
≤ 0. Note that x̄i = 0 is never optimal because in this case γi(xi) = 0 for all

xi ∈ [0, 1]. Differentiating (15) yields:

∂+L
∂x̄i

= f(x̄i)

∫
x−i∈[0,1]n−1

(
max{0, γ−i (x̄i),max

j 6=i
γj(xj)} −max{0, γi(x̄i),max

j 6=i
γj(xj)}

)
dF (x−i)

+

∫
x∈[0,1]n

∂+ max{0,maxj=1,...,n γj(xj)}
∂x̄i

dF (x) (38)

The first term in (38) comes from possible discontinuity of the integrand of L in (15) at

xi = x̄i. The second term comes from differentiating the integrand of L.

First, let us prove part (a) of the Lemma by contradiction. So suppose that γ−i (x̄i) >

γi(x̄i), x̄i < 1, and the set Ai(λ, x̄) has a positive measure. The former inequality is equivalent

to λi >
(1−F (xi))

2

1−F (xi)+xif(xi)
, and implies that γ−i (xi) >

x̄2
i f(xi)

1−F (xi)+xif(xi)
> 0.

Therefore, the first term in (38) can be rewritten as follows:

f(x̄i)

∫
x−i∈[0,1]n−1:max{0,maxj 6=i γj(xj)}<γi(x̄i)

γ−i (x̄i)− γi(x̄i)dF (x−i)+

f(x̄i)

∫
x−i∈[0,1]n−1:γi(x̄i)≤max{0,maxj 6=i γj(xj)}<γ−i (x̄i)

(
γ−i (x̄i)−max{0,max

j 6=i
γj(xj)}

)
dF (x−i)

(39)
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Now, let us consider the second term of (38). From (14) we have:

∂+γi(xi)

∂xi
=

{
0, if xi < xi,

1− λi
(1−F (xi))

2 (1− F (xi) + xif (xi)) = f(x̄i)
1−F (x̄i)

(
γi(x̄i)− γ−i (x̄i)

)
, if xi ≥ x̄i,

(40)

From (40) and γ−i (x̄i) > γi(x̄i) it follows that ∂+γi(xi)
∂xi

< 0 for xi ≥ xi . This and the fact

that
∂γj(xj)

∂x̄i
= 0 for j 6= i imply that the second term in (38) equals:∫

x: xi∈[x̄i,1]:max{0,maxj 6=i γj(xj)}<γi(x̄i)

∂+γi(xi)

∂xi
dF (x) =

f(x̄i)

∫
x−i∈[0,1]n−1:max{0,maxj 6=i γj(xj)}<γi(x̄i)

γi(x̄i)− γ−i (x̄i)dF (x−i) (41)

Using (39) and (41) in (38) yields:

∂+L
∂x̄i

= f(x̄i)

∫
x−i:γi(x̄i)≤max{0,maxj 6=i γj(xj)}<γ−i (x̄i)

(
γ−i (x̄i)−max{0,max

j 6=i
γj(xj)}

)
dF (x−i) > 0

(42)

where the inequality holds because the set of integration is Ai(λ, x̄), which has a positive

measure and is compact, and the integrand is positive everywhere on this set. But then x̄i

cannot be an optimal choice.

Next, consider part (b). Again, the proof is by contradiction, so suppose that γi(x̄i) >

γ−i (x̄i), and the set Bi(λ, x̄) has a positive measure. The former is equivalent to λi <
(1−F (xi))

2

1−F (xi)+xif(xi)
and implies that γi(xi) > 0. Then the first term in (38) is equal to:

f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)≤γi(x̄i)

(
max{0, γ−i (x̄i),max

j 6=i
γj(xj)} − γi(x̄i)

)
dF (x−i) (43)

From (40) it follows that ∂+γi(xi)
∂xi

> 0 if xi ≥ x̄i and ∂+γi(x̄i)
∂xi

= 0 if xi < x̄i. Since
∂γj(xj)

∂x̄i
= 0

for j 6= i and γi(xi) > 0, the second term of (38) in this case equals:

f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)≤γi(x̄i)

γi(x̄i)− γ−i (x̄i)dF (x−i) (44)

Combining (43) and (44) yields:

∂+L
∂x̄i

= f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)≤γi(x̄i)

max{0, γ−i (x̄i),max
j 6=i

γj(xj)} − γ−i (x̄i)dF (x−i) =

f(x̄i)

∫
x−i∈[0,1]n−1:γ−i (x̄i)<max{0,maxj 6=i γj(xj)}≤γi(x̄i)

max{0,max
j 6=i

γj(xj)} − γ−i (x̄i)dF (x−i) > 0.

(45)
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where the equality holds because the integrand under the first integral is nonnegative for all

x−i and is positive only if γ−i (x̄i) < max{0,maxj 6=i γj(xj)}, and the set {x−i : max{0,maxj 6=i γj(xj)}
≤ γi(x̄i)} is identical to the set {x−i : maxj 6=i γj(xj) ≤ γi(x̄i)} because γi(x̄i) > 0. Finally,

note the set of integration under the last integral is Bi(λ, x̄) which has a positive measure,

is compact and the integrand is positive for any x−i in this set, so the final inequality holds.

But then x̄i cannot be an optimal choice. This completes the proof of the Lemma. Q.E.D.

Next, we prove the following Claim 1: λi ≤ 1− F (x̄i) for all i ∈ {1, ..., n}.
Although we need to consider only the case where x̄i < 1 for all i ∈ {1, ..., n}, this claim

also holds when x̄j = 1 for some j, because in this case λj = 0 and the following proof applies

verbatim to establish the result for other i.

As a first step, let h1 ∈ arg maxi γ
−
i (x̄i) and suppose that λh1 > 1 − F (x̄h1), and so by

(14) γh1(x̄h1) < 0 < γ−h1
(x̄h1). Let us show that we cannot be at the optimum.

Note that for every i s.t. γi(x̄i) < γ−i (x̄i), we have γh1(x̄h1) < max{0, γ−i (x̄i)} < γ−h1
(x̄h1).

Also, for every i s.t. γ−i (x̄i) = γ−h1
(x̄h1) ≤ γi(x̄i), we have λi < 1 − F (x̄i), and hence γi(xi)

is increasing on [0, x̄i]. So, γh1(x̄h1) < max{0, γi(xi)} < γ−h1
(x̄h1) for all xi ∈ [0, x̄i). Finally,

if γ−i (x̄i) < γ−h1
(x̄h1), then γh1(x̄h1) < max{0, γi(xi)} < γ−h1

(x̄h1) for all xi in some interval

(x̄i− δi, x̄i) where δi > 0. Hence, the set Aĩ(λ, x̄) has a positive measure, and so by part (a)

of Lemma 10 we cannot be at the optimum.

Next, we proceed by induction. Fix hk ∈ {1, ..., n} and suppose that for every i s.t.

γ−hk(x̄hk) < γ−i (x̄i) we have λi ≤ 1 − F (x̄i). Let us show that λhk ≤ 1 − F (x̄hk). To prove

this, we suppose otherwise i.e., λhk > 1 − F (x̄hk), and so by definition in (14) γhk(x̄hk) <

0 < γ−hk(x̄h1). Let us show that this cannot be optimal.

By inductive assumption, for every i s.t. γ−hk(x̄hk) < γ−i (x̄i) we have λi ≤ 1− F (x̄i) and

hence γi(xi) is increasing on [0, x̄i], with γi(0) < 0. By definition in (14), the same is true for

every i such that γ−i (x̄i) ≤ γi(x̄i). So for all such i, γhk(x̄hk) < max{0, γi(xi)} < γ−hk(x̄hk) for

all xi in some interval (x̄i−δi, x̄i) where δi > 0. Finally, if γi(x̄i) < γ−i (x̄i), then λi > 1−F (x̄i)

and so by inductive assumption γ−i (x̄i) ≤ γ−hk(x̄hk), and hence γhk(x̄hk) < max{0, γi(x̄i)} <
γ−hk(x̄hk). Hence, the set Ahk(λ, x̄) has a positive measure, and so by part (a) of Lemma 10

we cannot be at the optimum. This completes the proof of Claim 1.

An important consequence of Claim 1 is that γi(xi) is increasing on [0, x̄i) for all i, with

γi(0) < 0. Making use of this property, we will establish the next two Claims.

Claim 2: Suppose that γ−i (x̄i) ≤ γ−j (x̄j) for some i and j. Then γ−i (x̄i) ≤ γi(x̄i).

Suppose that γi(x̄i) < γ−i (x̄i). Let us show that we cannot be at the optimum. Note

that γ−i (x̄i) > 0. By Claim 1, γk(xk) is increasing on [0, x̄k) for all k , with γk(0) < 0. So
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there exists x̃k ∈ (0, x̄k] s.t. γk(xk) < γ−i (x̄i) for all xk ∈ [0, x̃k). Moreover, there exists x̃j ∈
(0, x̄j] s.t. γj(x̃j) = γ−i (x̄j). Therefore, γi(x̄i) < max{0, γj(xj),maxk 6=i,j γk(xk)} < γ−i (x̄i) if

xk ∈ [0, x̃k) for all k 6∈ {i, j}, and xj ∈ (x̄j − δj, x̄j) for some δj > 0. So, the set Ai(λ, x̄) has

a positive measure, and by part (a) of Lemma 10 we cannot be at the optimum.

Claim 3: Suppose that in an optimal mechanism h1 ∈ arg maxj∈{1,...,n} γ
−
i (x̄j) and i, i 6=

h1, is such that either (i) γ−i (x̄i) < γ−h1
(x̄h1), or (ii) γ−i (x̄i) = γ−h1

(x̄h1) and γi(x̄i) ≤ γh1(x̄h1).

Then γi(x̄i) ≤ γ−i (x̄i).

Let us suppose that γ−i (x̄i) < γi(x̄i), and so γi(x̄i) > 0. We will show that this cannot

be optimal. As the Claim is stated, we need to consider two cases:

Case (i): γ−i (x̄i) < γ−h1
(x̄h1). Since λj ≤ 1− F (x̄j) and hence γj(0) < 0 for all j, the set

{xj : γj(xj) < γi(x̄i)} has a positive measure for all j 6∈ {i, h1}, and the set {xh1 : γ−i (x̄i) <

γh1(xh1) < γi(x̄i)} also has a positive measure. It follows that the set Bi(λ, x̄) has a positive

measure. Hence, γ−i (x̄i) < γi(x̄i) is suboptimal by Lemma 10. Note that this argument also

implies that γ−i (x̄i) ≤ γh1(x̄h1).

Case (ii): γ−i (x̄i) = γ−h1
(x̄h1). We will complete this case by showing that we cannot have

γ−i (x̄i) = γ−h1
(x̄h1) < γi(x̄i) ≤ γh1(x̄h1). For, suppose that this is so. Then 0 < γi(x̄i) ≤

γh1(x̄h1) and x̄i < 1, x̄h1 < 1. Observe that the set {xj : γj(xj) < γi(x̄i)} includes [0, x̄j) for

all j. Also, we have {xi : γ−h1
(x̄h1) < γi(xi) ≤ γh1(x̄h1)} = [x̄i, 1], and this set also has a has

a positive measure. It follows that the set Bh1(λ, x̄) has a positive measure, which cannot

hold at the optimum by part (b) of Lemma 10. This completes the proof of Claim 3.

Summarizing, Claims 2 and 3 imply that γ−i (x̄i) = γi(x̄i) either if γ−i (x̄i) = γ−h1
(x̄h1)

and γi(x̄i) ≤ γh1(x̄h1), or if γ−i (x̄i) < γ−h1
(x̄h1). Observe that in the latter case i.e., when

γ−i (x̄i) = γi(x̄i) < γ−h1
(x̄h1), we must also have γ−i (x̄i) = γi(x̄i) < γh1(x̄h1), for otherwise we

cannot be at the optimum by part (a) of Lemma 10.

Hence, we may conclude that the vector {γ−i (x̄i), γi(x̄i)}, i = 1, .., n, in the optimal

mechanism has the following properties. First, there exists h1 s.t. min{γ−h1
(x̄h1), γh1(x̄h1)} ≥

maxi 6=h1{γ−i (x̄i), γi(x̄i)}. For i 6= h1 we have, γ−i (x̄i) = γi(x̄i). For h1, we have either

min{γ−h1
(x̄h1), γh1(x̄h1)} > maxi 6=h1 γ

−
i (x̄i) or γh1(x̄h1) ≥ γ−h1

(x̄h1) = γ−i (x̄i) = γi(x̄i) for some

i 6= h1.

By definition (14), the equality γ−i (x̄i) = γi(x̄i) is equivalent to λi = (1−F (xi))
2

(1−F (xi)+xif(xi))
.

Substituting this into (14) yields γ−i (x̄i) = γi(x̄i) =
x̄2
i f(xi)

1−F (xi)+xif(xi)
, which is increasing in x̄i.

Note that if x̄h1 = x̄i for some i, then it is easy to see that γ−i (x̄i) = γi(x̄i) = γh1(x̄h1) =

γ−h1
(x̄h1), and vice versa.

So to complete the proof of part 1 of the Theorem, we establish the following: Claim 4:
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x̄h1 > x̄i for all i 6= h1 if and only if for any such i either min{γ−h1
(x̄h1), γh1(x̄h1)} > γ−i (x̄i) =

γi(x̄i), or γh1(x̄h1) > γ−h1
(x̄h1) = γ−i (x̄i) = γi(x̄i).

“Only If”: Suppose that x̄h1 > x̄i for all i. Let us show that γ−h1
(x̄h1) ≥ γ−i (x̄i) for any

i. For suppose otherwise i.e., γ−i (x̄i) > γ−h1
(x̄h1). Then by Steps 2 and 3 above, γi(x̄i) >

γ−h1
(x̄h1) = γh1(x̄h1) =

x̄2
h1
f(xh1

)

1−F (xh1
)+xh1

f(xh1
)
. So, we have min{γ−i (x̄i), γi(x̄i)} > γ−h1

(x̄h1) =

γh1(x̄h1). However, it is easy to see from (14) that this cannot hold when x̄h1 > x̄i.

Given that γ−h1
(x̄h1) ≥ γ−i (x̄i) for all i, we only need to rule out the case γ−h1

(x̄h1) =

γh1(x̄h1) = γ−i (x̄i) ≤ γi(x̄i) for some i. Observe that in this case γ−h1
(x̄h1) = γh1(x̄h1) =

x̄2
h1
f(xh1

)

1−F (xh1
)+xh1

f(xh1
)

and λi ≤ (1−F (xi))
2

(1−F (xi)+xif(xi))
. Then is easy to see from (14) that the previous

inequality γ−h1
(x̄h1) = γh1(x̄h1) = γ−i (x̄i) ≤ γi(x̄i) cannot hold since x̄h1 > x̄i.

It follows that γ−h1
(x̄h1) ≥ γ−i (x̄i) = γi(x̄i). So, by Steps 2 and 3, we can only have

min{γ−h1
(x̄h1), γh1(x̄h1)} > γ−i (x̄i) = γi(x̄i) or γh1(x̄h1) > γ−h1

(x̄h1) = γ−i (x̄i) = γi(x̄i), com-

pleting the proof of the Only If statement.

“If:” First note that γ−i (x̄i) = γi(x̄i) implies γ−i (x̄i) = γi(x̄i) =
x̄2
i f(xi)

1−F (xi)+xif(xi)
and

λi = (1−F (xi))
2

(1−F (xi)+xif(xi))
.

So, x̄h1 > x̄i follows from (14) both if min{γ−h1
(x̄h1), γh1(x̄h1)} > γ−i (x̄i) = γi(x̄i), and if

γh1(x̄h1) > γ−h1
(x̄h1) = γ−i (x̄i) = γi(x̄i). In particular, to see this in the latter case, note that

γ−h (x̄h) < γh(x̄h) implies that λh <
(1−F (xh))2

(1−F (xh)+xhf(xh))
and γ−h (x̄h) <

x2
hf(xh)

1−F (xh)+xhf(xh)
. But then

γ−i (x̄i) = γ−h (x̄h) implies that x̄h > x̄i.

This completes the proof of Claim 4 and part 1 of the Theorem.

Now let us establish part 2 of the Theorem. So, suppose that bidder h1 is such that

x̄h1 > x̄i for all i 6= h1. As shown in Claim 4 above, there are only two possibilities in this

case: for any i either min{γ−h1
(x̄h1), γh1(x̄h1)} > γ−i (x̄i) = γi(x̄i), or γh1(x̄h1) > γ−h1

(x̄h1) =

γ−i (x̄i) = γi(x̄i).

So, to prove this part, it remains to rule out the case min{γh1(x̄h1), γ−h1
(x̄h1)} > γi(x̄i) =

γ−i (x̄i) for all i 6= h1. Note, however, that this contradicts the definition of x̄i in (9).

Indeed, let x̆h1 be such that x̆h1−
1−λh1

−F (x̆h1
)

f(x̆h1
)

= maxi 6=h1 γi(x̄i). Such x̆h1 exists and satisfies

x̆h1 < x̄h1 because γh1(0) < 0 < maxi 6=h1 γi(x̄i) < γh1(x̆h1). Then for all x > x̆h1 , we have

γh1(x) > maxj 6=i maxxi∈[0,1] γi(xi) and so qh1(x) = 1 and so th1(x) = th1(1), contradicting (9).

Finally, note the value of the Lagrangian (15) does not change when we change the

threshold of bidder i from x̄i to x̆h1 , as follows from the following equality:∫ x̄h1

x̆h1

x− 1− λh1 − F (x)

f(x)
dF (x) +

∫ 1

x̄h1

x̄h1 −
λh1 x̄h1

1− F (x̄h1)
dF (x) =

∫ 1

x̆h1

x̆h1 −
λh1 x̆h1

1− F (x̆h1)
dF (x)

Q.E.D.
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Proof of Corollary 1:

Given x̄ = (x̄1, ..., x̄n), it is obvious that the profile λ(x̄) defined by (17) and (18) is

unique. To establish the opposite i.e., a profile λ = (λ1, ..., λn) uniquely defines a profile

x̄(λ), observe that by (17) and (18) we have 0 ≤ λi ≤ 1− F (x̄i) for all i, so we can restrict

consideration to such profiles. Then (17) and (18) also imply that x̄i is decreasing in λi.

Hence if λi ≤ λj for some j, then x̄i is a solution to (17) which is well-defined because the

right-hand side of (17) is decreasing in x̄i, and is equal to 1 (0) if x̄i = 0 (x̄i = 1).

Finally, if the profile (λ1, ..., λn) is such that there exists h1 satisfying λh1 < λj for all

j 6= h1, then x̄h1 is a solution to (18) which is well-defined because: (i) the right-hand side

of (18) depends only on minj 6=h1 λj and is decreasing in it; (ii) its left-hand side is increasing

in λh1 and in x̄h1 by increasing hazard rate property and because λh1 ≤ 1− F (x̄h1). Q.E.D.

Proof of Lemma 5: By Theorem 1, λi satisfies 0 < λi < 1 − F (x̄i) for all i. Since

γi(xi) = xi − 1−λ−F (xi)
f(xi)

for xi ∈ [0, x̄i), it is immediate that γ′i(xi) > 0 if f ′(xi) ≥ 0. If

f ′(xi) < 0, then γ′i(xi) >
d
(
xi−

1−F (xi)

f(xi)

)
dxi

> 0. The last inequality holds by the increasing

hazard rate property. So, γi(xi) is strictly increasing on [0, x̄i). Equations (17)-(18) in

Theorem 1 also imply that γi(x̄i) > γi(xi) for all xi ∈ [0, x̄i).

But then Lemma 4 implies that Qi(xi, x−i) and hence qi(xi) are both increasing in xi.

So a solution to the relaxed program satisfies the condition of monotonicity of qi(.) for all i

and is therefore also a solution to the full program. Q.E.D.

Proof of Lemma 6: To prove the Lemma we argue by contradiction, so suppose that

x̄j > x̄i. Then by part 1 of Theorem 1, λi(x̄i) > 0. Hence, the budget constraint of bidder i

is binding i.e., mi = x̄iqi(x̄i)−
∫ x̄i

0
qi(s)ds.

Further, since x̄j > x̄i, by Theorem 1 we have λj < λi and so γj(x̄j) > γi(x̄i) and

γj(x) < γi(x) for all x ∈ [0, x̄i]. So by Lemma 4, qj(x̄j) ≥ qi(x̄i) and qj(x) ≤ qi(x) for all

x ∈ [0, x̄i]. Therefore, we have:

mj ≥ x̄jqj(x̄j)−
∫ x̄j

0
qj(s)ds = x̄iqj(x̄j) +

∫ x̄j

x̄i

(qj(x̄j)− qj(s))ds−
∫ x̄i

0
qj(s)ds ≥

x̄iqj(x̄j)−
∫ x̄i

0
qj(s)ds ≥ x̄iqi(x̄i)−

∫ x̄i

0
qi(s)ds = mi (46)

The second inequality in (46) holds because qj(.) is nondecreasing, and the third inequality

holds because, as established above, qj(x̄j) ≥ qi(x̄i) and qj(x) ≤ qi(x) for all x ∈ [0, x̄i]. But
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(46) contradicts mi > mj. Hence, we must have x̄i ≥ x̄j. Q.E.D.

Proof of Lemma 7: Since qi(xi) ≡
∫
x−i∈[0,1]n−1 Qi(xi, x−i)

∏
j 6=i dF (xj), the inequalities

in (19) immediately follow from Lemma 4.

By Lemma 5, γi(xi) is strictly increasing on [0, x̄i) for all i. So the set Zi = {xi|γi(xi) =

γj(x̄j) for some j 6= i} is at most finite. Therefore, for any fixed xi ∈ [0, x̄i), xi 6∈ Zi, the

left-hand side of (19) is equal to its right-hand side because for any j 6= i there is at most a

single type xj ∈ [0, x̄j) s.t. γi(xi) = γj(xj) and the probability of this type xj is zero.

Both the left-hand and the right-hand sides of (19) depend only on xi and, through

γi(.) defined in (14), upon the profile (x̄1, ..., x̄n, λ1, ..., λn). So, when left-hand side and the

right-hand sides of (19) are equal, qi(xi) is uniquely defined by this profile.

Now, consider xi = x̄i. If x̄i 6= x̄j for all j 6= i, then the set {x−i ∈ [0, 1]n−1 : γi(x̄i) =

max{0,maxj 6=i γj(xj)}} has measure zero. Therefore, the left- and right-hand sides of (19)

are equal to each other.

Finally, the values of the left-hand and the right-hand sides of (19) depend only on xi

and the profile (x̄1, ..., x̄n, λ1, ..., λn). So when the left-hand and the right-hand sides of (19)

are equal to each other, qi(xi) is determined by xi and the profile (x̄1, ..., x̄n, λ1, ..., λn). Since

this is true a.e. on [0, x̄i], the last statement of the Lemma follows. Q.E.D.

Proof of Lemma 8: First, let us show that the budget constraint of the highest-budget

bidder 1 with budget m1 is binding in an optimal mechanism. Note that by Lemma 6 x̄1 ≥ x̄i

for all i 6= 1. The proof is by contradiction, so suppose not i.e., m1 > x̄1q(x̄1)−
∫ x̄1

0
q1(x)dx.

Then λ1 = 0. Therefore, γ1(x1) = x1− 1−F (x1)
f(x1)

for x1 < x̄1, which implies, in particular, that

q1(x1) = 0 for all x1 < pm where pm = arg maxp p(1− F (p)) i.e., pm − 1−F (pm)
f(xm)

= 0.

We will consider two cases: x̄1 = 1 and x̄1 < 1. First, suppose that x̄1 = 1. Then

γ1(x̄1) = 1. By Theorem 1, γi(xi) < 1 for all xi < 1. So, γ1(x̄1) > maxi 6=1 γi(xi) with

probability 1, and hence q1(1) = 1 by Lemma 7. So we have:

m1 > x̄1q1(x̄1)−
∫ x̄1

0

q1(x1)dx1 = 1−
∫ 1

pm
q1(x1)dx1 ≥ 1−

∫ 1

pm
1dx1 = pm,

which contradicts the assumption that m1 ≤ pm.

Now, suppose that x̄1 < 1. Since λ1 = 0, by Theorem 1 we must have γ1(x̄1) >

maxi 6=1,xi∈[0,1] γi(xi), so q1(x̄1) = 1 by Lemma 7. Hence we have:

m1 > x̄1q1(x̄1)−
∫ x̄1

0

q1(x1)dx1 = 1− (1− x̄1)−
∫ x̄1

0

q1(x1)dx1 ≥ 1−
∫ 1

pm
1dx1 = pm.
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So we again obtain a contradiction to the assumption that m1 ≤ pm.

To complete the proof let us establish that the budget constraint of any bidder i, i 6= 1,

is also binding. By Lemma 6 x̄i ≤ x̄1, so by Theorem 1 equation (17) holds for i. Hence,

either λi > 0, in which case the budget constraint of i must be binding or x̄i = 1.

To show that i’s budget constraint is binding when x̄1 = 1, we again argue by contra-

diction and suppose otherwise. Then λi = 0, and the same argument as for bidder 1 in case

x̄1 = 1 can be used to show that qi(x̄i) = 1 and qi(xi) = 0 for all xi < pm. Then we have

mi > x̄iqi(x̄i)−
∫ x̄i

0
qi(xi)dxi ≥ 1−

∫ 1

pm
1dx1 = pm. A contradiction. Q.E.D.

Proof of Lemma 9: The strong duality property holds and (x∗, λ∗) is the solution to

both the primal problem maxx minλ L(x̄, λ) and its dual minλ maxx L(x̄, λ) if and only if

(x∗, λ∗) is a saddle point of the Lagrangian (15) (see e.g. Proposition 1.3.7, page 76, Chapter

1 in Bertsekas (2001)) i.e., for all x̄ and λ we have:

L(x̄, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) (47)

So, to complete the proof of the Lemma we will establish that the saddle point property

(47) holds. Consider Lagrange dual function g(λ) ≡ maxx̄∈[0,1]n L(x̄, λ). We have g(λ) =

L(x̄(λ), λ), where x̄(λ) is the solution to the problem maxx̄∈[0,1]n L(x̄, λ) characterized in

Theorem 1 and is given by the inverse of the function λ(x̄) in Theorem 1.

By Danskin’s Theorem (Bertsekas (2001), Ch. 1, p. 131), the Lagrange dual function

g(λ) is convex and hence has a unique minimizer λ∗. Define x∗ = x̄(λ∗). Let us show that

the saddle-point property (47) holds for the pair (x∗, λ∗).

Since x∗ = x̄(λ∗), L(x̄, λ∗) ≤ L(x∗, λ∗), holds for all x̄ ∈ [0, 1]n by Theorem 1.

To show that L(x∗, λ∗) ≤ L(x∗, λ) we start by arguing that L(x̄, λ) is convex in λ for

fixed x̄. First, recall that the virtual value function γi(xi) defined in (14) is linear in λi. Since

max{0,maxi{γi(xi)}} is convex in (γ1(x1), ..., γn(xn)), it follows that max{0,maxi{γi(xi)}}
is also convex in (λ1, ..., λn). The integration operator over x preserves convexity of the

integrand max{0,maxi{γi(xi)}}
∏

i f(xi) in the parameters (λ1, ..., λn), so the Lagrangian

L (x, λ) is, indeed, convex in (λ1, ..., λn) for all x̄.

The convexity of L(x̄(λ∗), λ) in λ implies that it has a unique minimum which can be

found as a unique solution to the first-order conditions ∂L(x̄(λ∗),λ+εh)
∂ε ε=0

≥ 0 for all h ∈ Rn.

But by Danskin’s Theorem (Bertsekas (2001), Ch. 1, p. 131), ∂L(x̄(λ),λ+εh)
∂ε ε=0

= ∂g(λ+εh)
∂ε ε=0

for all λ, h. Since by definition λ∗ = arg minλ g(λ), we have ∂g(λ∗+εh)
∂h ε=0

≥ 0 for all h. So,
∂L(x̄(λ∗),λ∗+εh)

∂ε ε=0
≥ 0 for all h i.e., λ∗ = arg minλ L(x̄(λ∗), λ), and hence the second inequality
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in (47) holds. This completes the proof that (x∗, λ∗) is a saddle point. Q.E.D.

Proof of Theorem 2: By Lemma 9, the solution to our problem can be obtained

by minimizing the dual Lagrange function g(λ) ≡ L(λ, x̄(λ)). This function has a unique

minimum attained at λ satisfying the first-order conditions g′(λ;h) ≡ ∂L(λ+εh,x̄(λ))
∂ε ε=0

≥ 0 for

any vector h ∈ Rn. In the rest of the proof we will focus on these first-order conditions.

To begin with, consider i such that λi 6= λj, and so by Theorem 2, x̄i 6= x̄j for any j 6= i.

In this case, the only variation h in the vector λ that we need to consider to characterize the

optimal λi involves a change in λi only. So we have the following first-order condition:

∂g(λ)

∂λi
= mi − x̄i

∫
x−i∈[0,1]n−1:γi(x̄i)>maxj 6=i γj(xj)

∏
j 6=i

dF (xj)

+

∫ x̄i

0

∫
x−i∈[0,1]n−1:γi(s)>max{0,maxj 6=i γj(xj)}

∏
j 6=i

dF (xj)ds = mi − x̄iqi(x̄i) +

∫ x̄i

0
qi(s)ds = 0

The second equality in this sequence holds by Lemma 7. Thus, we obtain condition (21).

Next suppose that there is a “cluster” {k1, ..., kl}, l ∈ {2, ..., n}, such that x̄k1 = ... =

x̄kl = x̄c 6= x̄j for any j 6∈ {k1, ..., kl}. Since the common multiplier λc for all bidders in the

cluster and the set of bidders in it must be optimal, no variation h of them should decrease

the value of g(λ). Thus, we have to consider all variations of the vector λ, ε × IJ , where

J ⊆ {k1, ..., kl} is a subset of bidders in the “cluster” and IJ is an n-vector with entries

corresponding to bidders in J equal to 1 and other entries equal to zero. The following

first-order conditions must hold for any J : ∂g(λ+εIJ )
∂ε ε=0+

≥ 0 and ∂g(λ+εIJ )
∂ε ε=0− ≤ 0. Although

there are 2l− 1 such nonempty subsets J , it will be sufficient to consider only 2l of them, as

will be shown below.

So, let J = {k′1, ..., k′r} ⊆ {k1, ..., kl}. Then we have: ∂g(λ+ε×IJ )
∂ε |ε=0+

=

∑
h=1,...,r

mk′h
+

∫
x: maxh∈{1,...,r} γk′

h
(xk′

h
)>max{0,maxj 6∈{k′1,...,k

′
r}
γj(xj)}

∂maxh=1,...,r γk′h(xk′
h

)

∂λk′h |λk′
h

=λc

∏
i

dF (xi)

=
∑

h=1,...,r

mk′h
+

∫ x̄c

0

∫
x−k′

h
:γk′

h
(s)>max{0,maxj 6=k′

h
γj(xj)}

∂γk′h(s)

∂λk′h |λk′
h

=λc

∏
j 6=k′h

dF (xj)dF (s)

+

F (x̄c)l−r
1− F (x̄c)r

1− F (x̄c)

∫ 1

x̄c

∫
x−k1...−kl

∈[0,1]n−l:γk′1
(x̄c)>maxj 6∈{k1,...,kl} γj(xj))

∂γk′1(s)

∂λk′1 |λk′1
=λc

∏
j 6∈{xk1

,...,xkl}

dF (xj)dF (s)
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=
∑

h=1,...,r

mk′h
+

∑
h=1,...,r

∫ x̄c

0

∫
x−k′

h
∈[0,1]n−1:γk′

h
(s)>max{0,maxj 6=k′

h
γj(xj)}

∏
j 6=k′h

dF (xj)ds

− x̄cF (x̄c)l−r
1− F (x̄c)r

1− F (x̄c)

∫
x−k1...−kl

∈[0,1]n−l:γk′1
(x̄c)>maxj 6∈{k1,...,kl} γj(xj)

∏
j 6∈{xk1

,...,xkl}

dF (xj)

=
∑

h=1,...,r

mk′h
+ r

∫ x̄c

0
qk′1(s)ds− x̄cF (x̄c)l−r

1− F (x̄c)r

1− F (x̄c)
Prob[γk′1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] (48)

The first equality in (48) holds by definition. The second equality uses the properties of the max

operator. In particular, the factor 1 − F (x̄c)r in the last term after the second equality reflects

conditioning on the event that at least one of the bidders in J = {k′1, ..., k′r} has value above x̄c,

and the factor F (x̄c)l−r reflects conditioning on the event that the bidders in C(x̄c) \J have values

below x̄c. We use
∂γk′1

(s)

∂λk′1
as the integrand in this term, because γk′1(s) = γk′h(s) for all h ∈ {1, ..., r}.

To obtain the third equality we use the definition (14) and, in particular,
∂γk′1

(s)

∂λk′1
= 1

f(x̄c) if

s < x̄c and
∂γk′1

(s)

∂λk′1
= − x̄c

1−F (x̄c) if s > x̄c. The final equality uses Lemma 7.

Similarly, we have: ∂g(λ+ε×IJ )
∂ε |ε=0− =

∑
h=1,...,r

mk′h
+

∫
x: maxh∈{1,...,r} γk′

h
(xk′

h
)≥max{0,maxj 6∈{k′1,...,k

′
r}
γj(xj)}

∂maxh=1,...,r γk′h(xk′
h

)

∂λk′h |λk′
h

=λc

∏
i

dF (xi)

=
∑

h=1,...,r

mk′h
+

∫ x̄c

0

∫
x−k′

h
:γk′

h
(s)≥max{0,maxj 6=k′

h
γj(xj)}

∂γk′h(s)

∂λk′h |λk′
h

=λc

∏
j 6=k′h

dF (xj)dF (s)


+

1− F (x̄c)r

1− F (x̄c)

∫ 1

x̄c

∫
x−k1...−kl

∈[0,1]n−l:γk′1
(x̄c)≥maxj 6∈{k1,...,kl} γj(xj))

∂γk′1(s)

∂λk′1 |λk′1
=λc

∏
j 6∈{xk1

,...,xkl}

dF (xj)dF (s)

=
∑

h=1,...,r

mk′h
+

∑
h=1,...,r

∫ x̄c

0

∫
x−k′

h
∈[0,1]n−1:γk′

h
(s)≥max{0,maxj 6=k′

h
γj(xj)}

∏
j 6=k′h

dF (xj)ds

− x̄c 1− F (x̄c)r

1− F (x̄c)

∫
x−k1...−kl

∈[0,1]n−l:γk′1
(x̄c)≥maxj 6∈{k1,...,kl} γj(xj)

∏
j 6∈{xk1

,...,xkl}

dF (xj)

=
∑

h=1,...,r

mk′h
+ r

∫ x̄c

0
qk′1(s)ds− x̄c 1− F (x̄c)r

1− F (x̄c)
Prob[γk′1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] (49)

Note that the second term in the penultimate expression in both (48) and (49) is equal

to r
∫ xc

0
qk′h(s)ds for any h ∈ {1, ..., r}. This is so because: (i) for almost all s ∈ [0, x̄c), the

set of x−k′h such that γk′h(s) = maxj 6=k′h γj(xj) has measure zero, and so by Lemma 7, qk′h(s) =∫
x−k′

h
∈[0,1]n−1:γk′

h
(s)≥max{0,maxj 6=k′

h
γj(xj)} dF (x−k′h) =

∫
x−k′

h
∈[0,1]n−1:γk′

h
(s)>max{0,maxj 6=k′−h γj(xj)} dF (x−k′h)

for all h ∈ {1, ..., r} and almost all s ∈ [0, x̄c]; (ii) x̄c 6= x̄j for any j 6∈ {k1, ..., kl}, and so

Prob[γk′1(x̄c) > maxj 6∈{k1,...,kl} γj(xj)] = Prob[γk′1(x̄c) ≥ maxj 6∈{k1,...,kl} γj(xj)].
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The expressions for ∂g(λ+ε×IJ )
∂ε |ε=0+

in (48) and ∂g(λ+ε×IJ )
∂ε |ε=0− in (49) differ by the factor

F (x̄c)l−r in the last term of (48), which does not appear in the corresponding term of (49).

This is so because a negative variation (ε < 0) in λc does increase γk′h(x) for x ≥ x̄c, and so

maxh∈{1,...,l} γkh(x) changes irrespective of the highest type among the other l− r bidders in

the cluster C(x̄c) who are not in set J . On the other hand, a positive variation (ε > 0) in

λc lowers the value of γk′h(x) for x ≥ x̄c, and so the maxh∈{1,...,l} γkh(x) changes only if the

maximal value among the other l − r bidders in the cluster is below x̄c. The latter occurs

with probability F (x̄c)l−r, the factor in the last term of (48).

When J = C(x̄c), (48) and (49) yield (22) as in this case we have:

∂g(λ+ ε× I{k1,...,kl})

∂ε |ε=0+
=
∂g(λ+ ε× I{k1,...,kl})

∂ε |ε=0−
=∑

h=1,...,l

mkh + l

∫ x̄c

0

qk1(s)ds− x̄c1− F (x̄c)l

1− F (x̄c)
Prob[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] = 0

To obtain (23), first use (48) to rewrite
∂g(λ+ε×I{kr+1,...,kl})

∂ε |ε=0+
≥ 0 as follows:

mkr+1 + ...+mkl

l − r
− x̄cF (x̄c)r

l − r
1− F (x̄c)l−r

1− F (x̄c)
Prob[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] ≥ −

∫ x̄c

0

qk1(s)ds.

(50)

Then use (49) to rewrite
∂g(λ+ε×I{k1,...,kr})

∂ε |ε=0− ≤ 0 as follows:

mk1 + ...+mkr

r
− x̄c1

r

1− F (x̄c)r

1− F (x̄c)
Prob[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] ≤ −

∫ x̄c

0

qk1(s)ds. (51)

Combining (50) and (51) yields (23) for any r ∈ {2, ..., l − 1}.
To complete the proof and establish the uniqueness of the solution, let us show that

(22) and (23) imply (50) and (51). It is sufficient to show that (50) holds for the subsets

Jl−r = {kr+1, ..., kl} of C(x̄c), r ∈ {1, ..., l−1} including l− r lowest-budget bidders, for then

it also holds for any other subset of C(x̄c) of size l − r. Similarly, it is enough to show that

(51) holds for the subsets Ĵr = {k1, ..., kr} including r highest-budget bidders in the cluster.

To show that (50) holds for J = {kl−r+1, ..., kl}, combine (22) and (23) to obtain:(
mkr+1 + ...+mkl

)
l

l − r
≥ − x̄c

1− F (x̄c)

(
1− F (x̄c)r − rF (x̄c)r

1− F (x̄c)l−r

l − r

)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]

+
∑

j=1,...,l

mkj = − x̄c

1− F (x̄c)

(
1− F (x̄c)r − rF (x̄c)r

1− F (x̄c)l−r

l − r

)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]

+ x̄c
1− F (x̄c)l

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]− l

∫ x̄c

0
qk1(s)ds =

=
l

l − r
x̄cF (x̄c)r

1− F (x̄c)l−r

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]− l

∫ x̄c

0
qk1(s)ds. (52)
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The inequality in (52) holds by (23), the first equality holds by (22), the second equality

holds by rearrangement. So, (50) holds for J = {kl−r+1, ..., kl}.
Now take J = {k1, ..., kr}. Then combining (22) and (23) yields:

(mk1 + ...+mkr) l

r
≤ x̄c

(
(l − r) 1− F (x̄c)r

(1− F (x̄c)) r
−
F (x̄c)r

(
1− F (x̄c)l−r

)
(1− F (x̄c))

)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]

+
∑

j=1,...,l

mkj =
x̄c

1− F (x̄c)

(
(l − r)1− F (x̄c)r

r
− F (x̄c)r

(
1− F (x̄c)l−r

))
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]

+ x̄c
1− F (x̄c)l

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]− l

∫ x̄c

0
qk1(s)ds =

=
l

r
x̄c

1− F (x̄c)r

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]− l

∫ x̄c

0
qk1(s)ds (53)

The inequality in (53) holds by (23). The first equality holds by (22). The second equality

holds by rearrangement. So (51) also holds. Q.E.D.

Proof of Theorem 3: “Only if” Part: Suppose that top auction with threshold x̄t

and reservation value rt is an optimal mechanism. Then by Theorem 2 condition (23) holds

for the cluster including all bidders. By Definition 1, qi(s) = 0 for xi < rt, qi(xi) = F n−1(xi)

for xi ∈ [rt, x̄
t), and (26)-(27) hold. Substituting these into (23) yields (28).

“If” Part: Suppose that (28) holds for all k ∈ {1, ..., n− 1} and x̄t defined by (26). By

inspection (26) is equivalent to (22) and (28) is equivalent to (23) when x̄c = x̄t and cluster

C includes all n bidders. By Theorem 2 the optimal mechanism is unique and (22) and

(23) are necessary and sufficient conditions characterizing it, so the top auction is a unique

optimal mechanism. Q.E.D.

Proof of Corollary 2: Since top auction is the optimal mechanism under both pro-

files (m1, ...,mn) and (m′1, ...,m
′
n) and

∑
imi =

∑
im
′
i = M , according to (26) the optimal

threshold x̄t is the same in both cases. Hence, by Theorem 1, the Lagrange multiplier of each

bidder under both budget profiles is λ̄t =
(1−F(x̄t))

2

(1−F (x̄t)+x̄tf(x̄t))
. So, the value of the Lagrangian

(15) giving the seller’s expected profits is the same under both budget profiles. Q.E.D.

Proof of Theorem 4: Theorem 1 shows that the optimal mechanism is uniquely defined

by the vector of thresholds (x̄1, ..., x̄n). By Theorem 3, the failure of (28) implies that we

cannot have x̄1 = ... = x̄n. By Lemma 6, x̄1 ≥ ... ≥ x̄n. So x̄i > x̄i+1 for some i.

Now, consider bidders i and j such that x̄i > x̄j. By Theorem 1, λi < λj, and

γi(x) < γj(x) for x ∈ [0, x̄j]. Therefore the reservation values ri and rj where the virtual

utilities of bidders i and j, respectively, are equal to zero, satisfy ri > rj. Also, by Lemma
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7 qi(x) < qj(x) for x ∈ [rj, x̄j]. The last claim of the Theorem follows from Lemma 6. Q.E.D.

Proof of Corollary 3: If under (m1, ...,mn) bidders i, i+ 1,...,i+ l constitute a cluster

with a common threshold x̄c, then
∑i+l

j=imj =
∑i+l

j=im
′
j. This also applies to trivial clusters

consisting of a single bidder. So, if we assign the same profile of thresholds (x̄1, ..., x̄n) to the

bidders with budgets (m′1, ...,m
′
n), then conditions (21) and (22) of Theorem 2 would still

hold. To confirm that the threshold profile (x̄1, ..., x̄n) remains optimal under (m′1, ...,m
′
n),

it remains to verify that condition (23) still hold. This is so because: (i) (23) holds for

(m1, ...,mn) and (x̄1, ..., x̄n); (ii) the right-hand side of (23) depends only on (x̄1, ..., x̄n) and

hence remains unchanged; (iii) the left-hand side of (23) depend only on the budgets; (iv)

|mi −m′i| is sufficiently small for all i.

Next, since the same threshold profile (x̄1, ..., x̄n) is optimal under both budget profiles

(m1, ...,mn) and (m′1, ...,m
′
n), Theorem 1 implies that the profile of Lagrange multipliers

(λ1, ..., λn) is the same also. Therefore, the value of the Lagrangian (15), which gives the

seller’s expected profits, is the same under these two budget profiles. Q.E.D.

Proof of Theorem 5: Since the bidders’ valuations are identically distributed, the

seller’s revenue function π(m1, ...,mn) is exchangeable i.e., π(m1, ...,mn) = π(P (m1, ...,mn))

where P (m1, ...,mn) is a permutation of (m1, ...,mn). Let PMm denote the set of permuta-

tions of (m1, ...,mn). Its cardinality (the total number of permutations) is equal to n!.

Fixing a budget profile (m1, ...,mn) such that
∑

imi = M , by concavity of π(.) we obtain:

π

(
1

M
, ...,

1

M

)
≥

∑
P∈PMm

π(P )

#PMm
= π(m1, ...,mn)

To establish the second part of the Theorem, note that under its conditions there exists

a doubly stochastic matrix S (i.e., all entries of S are nonnegative and all the entries in

each row and column sum up to one) such that m = Sm′, where m = (m1, ...,mn) and

m′ = (m′1, ...,m
′
n) (see Theorem 3.5.4. in Marcus and Mink (1992).

By Birkhoff Theorem (see e.g. Marcus and Mink (1992)), any doubly stochastic matrix

belongs to a convex hull generated by permutation matrices.18 So, S =
∑n′

k=1 θkPk, where

θk ≥ 0 for all k ∈ {1, ..., n′}, for some n′ > 1,
∑n′

k=1 θk = 1, and Pk is a permutation matrix.

So, π(m) = π(
∑n′

k=1 θkPkm
′) ≥

∑n′

k=1 θkπ(Pkm
′) = π(m′), where the inequality holds by

concavity of π and the second equality holds by the exchangeability of π (·). Q.E.D.

18A permutation matrix is an n × n matrix every row and column of which contains a single 1

with zeroes everywhere else.

49



10 Appendix B: Asymmetrically Distributed Values

In this section we extend our analysis to the case of asymmetrically distributed valuations

and show that, for a set of parameter values, the optimal mechanism is a “generalized

top auction.” In this mechanism, as in the “top auction,” bidders with sufficiently high

valuations are tied and the good is allocated randomly between them. However, in the

generalized top auction the bidders have different valuation thresholds, not a common one

as in the top auction, and bidders with the same valuations below the thresholds face different

probabilities of trading due to the distribution asymmetry.

For brevity, we will focus on the case of two bidders. Extending the results to n bidders

is straightforward but notationally cumbersome. So, suppose that bidder i’s, i ∈ {1, 2},
valuation is distributed according to probability distribution Fi with increasing hazard rate,

and her budget mi satisfies mi − 1−Fi(mi)
fi(mi)

< 0. As in the symmetric case, this assumption

ensures that budget constraints of all bidders are binding. We do not impose an ordering of

m1 and m2. However, we make the following ranking assumption.

Assumption 2 (Monotone Likelihood Ratio) For all x, x′ ∈ [0, 1], x′ > x, f1(x′)
f1(x)

> f2(x′)
f2(x)

.

Note that Assumption 2 implies that F1(.) first-order stochastically dominates F2(.).

A careful perusal of the derivation of the Lagrangian (13), and of the proofs of Theorem 1,

which establishes a 1-to-1 relationship between the vectors of thresholds x and the Lagrange

multipliers λ, and Lemmas 4-5 and 7-9 confirms that all these results apply verbatim to the

case of the asymmetric distributions. We omit rewriting these results in order to save space.

Next, let us introduce the following definition:

Definition 2 A generalized top auction is a mechanism in which the bidders’ thresholds x1,

x2 and expected probabilities of trading q1(x1) and q2(x2) satisfy the following conditions:

x2
1f1 (x1)

1− F1 (x1) + x1f1 (x1)
=

x2
2f2 (x2)

1− F2 (x2) + x2f2 (x2)
, (54)∑

i=1,2

(1− Fi(xi))qi(xi) = 1− F1(x1)F2(x2), (55)

and in which the probabilities of trading qi(xi) for xi ∈ [0, xi), i ∈ {1, 2} is uniquely defined

by 19 in Lemma 7, with γi(xi) = xi −
1−Fi(xi)−

(1−Fi(xi))
2

(1−Fi(xi)+xifi(xi))
fi(xi)

.

Note that equation (54) says that the buyers’ virtual values at the thresholds x1 and x2,

γ1 (x1) and γ2 (x2), are equal, so it is optimal for the seller to allocate the good randomly
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across the buyers when x1 ≥ x1 and x2 ≥ x2. Equation (55) is the feasibility condition

on q1(x1) and q2(x2) which must be satisfied when the good is allocated to a buyer with a

valuation above her threshold iff there is at least on such buyer.

Our proof of the existence and optimality of the generalized top auction will proceed as

follows. First, we will substitute qi(xi) out from (55) by using the budget constraint i.e.,

qi(xi) =
mi+

∫ xi
0 qi(xi)dxi
xi

, yielding a system of two equations, (54) and modified (55), which

only depends on x1 and x2. Then we will establish that this system has a solution. Besides

condition (55), feasibility requires that qi(xi) ≤ 1 and qi(xi) ≥ Fj(xj) for i ∈ {1, 2}. The

latter condition is necessary to ensure that qi(.) is increasing at xi for i ∈ {1, 2}. However,

when (55) holds, any two of these feasibility conditions imply the other two. We will use this

property in the following Theorem to establish the feasibility of the generalized top auction.

Theorem 6 (i) There exist δ1, δ2 ∈ (0, 1) such that the system of equations (54) and (56)

below has a solution (x1, x2) ∈ (δ1, 1− δ1)× (δ2, 1− δ2):∑
i=1,2

1− Fi (xi)
xi

(
mi +

∫ xi

0

qi(x)dx

)
= 1− F1 (x1)F2 (x2) . (56)

where qi(·) are uniquely defined in (19) in Lemma 7.

(ii) There exists ε > 0 s.t. whenever |F2(x)−F1(x)| < 0 for x ∈ [0, 1] and |m2−m1| ≤ ε,

then then the solution (x1, x2) ∈ (0, 1)2 to (54) and (56) is unique and satisfies the feasibility

conditions Fj(xj) ≤ mi+
∫ xi
0 qi(xi)dxi
xi

≤ 1 for i, j ∈ {1, 2}.
The optimal mechanism is a generalized top auction with these thresholds, (x1, x2).

Proof: Note that (56) is obtained by substituting qi(xi) from (55) using the budget

constraints of each bidder, mi = xiq1(x1) −
∫ xi

0
qi(xi)dxi. Thus, the thresholds (x1, x2) in a

generalized top auction must satisfy (54)and (56). Claims 1-3 below establish that a solution

to this system of two equations exists.

After establishing this, we will need to verify that our solution (x1, x2) to (54)and (56)

is such that q1(x1) =
m1+

∫ x1
0 q1(x1)dx1

x1
and q2(x2) =

m2+
∫ x2
0 q2(x1)dx1

x2
are feasible i.e., Fj(xj) ≤

qi(xi) ≤ 1. Claim 4 establishes that these feasibility conditions hold under the conditions

of the Theorem. Finally, Claim 5 completes the proof by establishing the uniqueness of the

solution.

Claim 1. Equation (54) defines a continuous, increasing and one-to-one mapping x2(x1)

between x1 ∈ [0, 1] and x2 ∈ [0, 1] such that x2(1) = 1 and x2(0) = 0.

Proof of Claim 1: Note that
x2
i fi(xi)

1−Fi(xi)+xifi(xi)
, i = 1, 2. is continuous and increasing in

xi on [0, 1] by the increasing hazard rate assumption, and is equal to 0 (1) if xi = 0 (xi = 1),

from which Claim 1 follows immediately.
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Claim 2. The mapping x2(x1) defined by (54) is such that x2(x1) ≤ x1, and dx2

dx1 x1=1
= 1.

Proof of Claim 2: Let us rewrite (54) as follows:

1

x1

+
1− F1 (x1)

x2
1f1(x1)

=
1

x2

+
1− F2 (x2)

x2
jf2 (x2)

. (57)

By the increasing hazard rate assumption, the left-hand (right-hand) side of (57) is mono-

tonically decreasing in x1 (x2).

Further, since 1−F1(x)
f1(x)

≥ 1−F2(x)
f2(x)

, the left-hand side of (57) is greater than its right-hand-

side at any x1 = x2. Hence, (57) holds as equality only if x1 ≥ x2.

Next, differentiating (57) yields:(
− 2

x2
1

− f ′1(x1)(1− F1 (x1))

x2
1f1(x1)

− 2(1− F1 (x1))

x3
1f1(x1)

)
=

(
− 2

x2
2

− f ′2(x2)(1− F2 (x2))

x2
2f1(x2)

− 2(1− F2 (x2))

x3
2f2(x2)

)
dx2

dx1
.

(58)

From (58) and x2(1) = 1 it follows that dx2

dx1 x1=1
= 1.

Claim 3. The system of equations (54), (56) has a solution (x1, x2). Any such solution

belongs to (δ1, 1− δ1)× (δ2, 1− δ2) for some δ1, δ2 ∈ (0, 1).

Proof of Claim 3: Using the mapping x2(x1) defined by equation (54) and described

in Claims 1 and 2, we can rewrite equation (56) as follows: G1 (x1) = G2 (x1) where

G1 (x1) =
1− F1 (x1)

x1
m1 +

1− F2 (x2(x1))

x2(x1)
m2 (59)

G2 (x1) = 1− F1(x1)F2(x2(x1))− 1− F1 (x1)

x1

∫ x1

0
q1 (x1) dx1 −

1− F2 (x2(x1))

x2(x1)

∫ x2(x1)

0
q2 (x2) dx2

(60)

Differentiating (59) and (60) and using x2(1) = 1 and
(
dx2

dx1

)
x1=1

= 1 yields:

G′1 (1) = −
∑
i=1,2

mifi(1), (61)

G′2 (1) = −
∑
i=1,2

fi (1)

(
1−

∫ 1

0

qi (xi) dxi

)
. (62)

By Lemma 7, when x1 = 1 then qi(xi) = 0 for xi < ri(1) where ri(1) is defined by ri(1) −
1−Fi(ri(1))
fi(ri(1))

= 0. So, 1 −
∫ 1

0
qi(xi)dxi ≥ ri(1). But since mi − 1−Fi(mi)

fi(mi)
< 0 for i ∈ {1, 2} by

assumption, we have mi < ri(1) ≤ 1 −
∫ 1

0
qi(xi)dxi. So, from (61) and (62) it follows that

0 > G′1(1) > G′2(1). But since G1 (1) = G2 (1) = 0, it follows that there exists δ′ > 0 s.t.

G1 (x1) < G2 (x1) for all x1 ∈ [1− δ′, 1].

On the other hand, G1 (.) is monotonically decreasing on [0, 1], limx1→0G1(x1)→∞ and

G2 (0) = 1. So, there exists δ′′ > 0 s.t. G1 (x1) > G2 (x1) if x1 ∈ [0, δ′′]. Let δ1 = min{δ′, δ′′}.

52



So, since G1(.) and G2(.) are continuous, there exists x1 ∈ (δ1, 1− δ) such that G1(x1) =

G2(x1). Then x1 and x2 = x2(x1) constitute a solution to the system (54), (56). Since the

mapping x2(x1) is continuous and satisfies x2(0) = 0 and x2(x1) ≤ x1 by Claim 2, we have

x2 = x2(x1) ∈ (0, 1). So, with a slight abuse of notation, from now on let (x1, x2) denote

such solution.

Next, we set qi(xi) =
mi+

∫ xi
0 qi(xi)dxi
xi

for i ∈ {1, 2}. So (56) can be rewritten as follows:

q1(x1)(1− F1(x1)) + q2(x2)(1− F2(x2)) = 1− F1(x1)F2(x2)). (63)

Claim 4. A solution (x1, x2) to (54) and (56) satisfies the feasibility conditions Fj(xj) ≤
qi(xi) ≤ 1 for i, j ∈ {1, 2} if and only if the inequalities (64) and (65) hold.

m1 −m2 ≤ x1 − x2F1 (x1)−
∫ x1

0

q1 (x1) dx1 +

∫ x2

0

q2 (x2) dx2, (64)

m1 −m2 ≥ x1F2 (x2)− x2 −
∫ x1

0

q1 (x1) dx1 +

∫ x2

0

q2 (x2) dx2, (65)

The “Only If” part of the claim is obvious. If the feasibility conditions Fj(xj) ≤
qi(xi) ≤ 1 for i, j ∈ {1, 2} hold, then using these conditions in the budget constraints

mi = xiqi(xi)−
∫ xi

0
qi(xi)dxi yields (64) and (65).

In the opposite direction, note that from (63) it follows immediately that Fj(xj) ≤ qi(xi)

if and only if qj(xj) ≤ 1 for i, j ∈ {1, 2}. So, if q1(x1) > 1 then q2(x2) < F1(x1). Using these

inequalities in the budget constraints yields that (64) fails. A similar argument shows that

if q2(x2) > 1 then by (63) q1(x1) < F2(x2), and so (65) fails.

Claim 5. There exists η > 0 such that (64) and (65) hold if |F2(x)− F1(x)| < η for all

x ∈ [0, 1] and |m1 −m2| < η.

Proof: First, we need to introduce some notation. Let ri be the unique solution for xi

to γi(xi) = 0 for i ∈ {1, 2}. Then for xi ∈ [ri, xi] define x̂j(xi) as a solution for xj to the

equation γi(xi) = γj(xj). That is, x̂2(x1) (x̂1(x2)) is the solution in x2 (x1) to the following

equation:

x1 −
1− F1(x1)− (1−F1(x1))2

(1−F1(x1)+x1f1(x1))

f1(x1)
= x2 −

1− F2(x2)− (1−F2(x2))2

(1−F2(x2)+x2f2(x2))

f2(x2)
. (66)

Note that both x̂1(.) and x̂2(.) are increasing, continuous, and satisfy x̂i(rj) = ri and x̂i(xj) =

xi for i, j ∈ {1, 2}.
Further, let us show that x̂2(x1) < x1 for all x1 ∈ (r1, x1]. Since γ′i(x) > 0, it is sufficient

to establish that γ2(x) > γ1(x) for all x ∈ [r2, x2].
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First, since γi(x) is continuous in x for i ∈ {1, 2}, γ1(x1) = γ2(x2) and, as established

above, x1 > x2, it follows that there exists η > 0 s.t. γ2(x) > γ1(x) for all x ∈ [x2 − η, x2].

So, if γ2(x) ≤ γ1(x) for some x ∈ [r2, x2), there exists x̃ ∈ [r2, x2) s.t. γ2(x̃) = γ1(x̃) and

γ′2(x̃) > γ′1(x̃) which, by definition of γi(.), implies that
f ′2(x̃)

f2(x̃)
≥ f ′1(x̃)

f1(x̃)
. However, the last

inequality contradicts Assumption 2 (MLRP). Hence, we must have γ2(x) > γ1(x) for all

x ∈ [r2, x2) and therefore x̂2(x1) < x1 for all x1 ∈ [r1, x1].

Using this notation, we have qi(xi) = Fj(x̂j(xi)) if xi ≥ ri and qi(xi) = 0 otherwise.

Our next step is to prove a lower bound for the right-hand sides of (64) and an upper

bound for the right-hand side of (65). For this, we need to bound the expression
∫ x1

0
q1(x)dx−∫ x2

0
q2(x)dx. We have:

∫ x2

0
q2(x2)dx2 =∫ x2

r2

F1(x̂1(x2))dx2 =

∫ x1

0
x2 −max{r2, x̂2(x1)}dF1(x1) = x2F1(x1)− r2F1(r1)−

∫ x1

r1

x̂2(x1)dF1(x1)

≥ x2F1(x1)− r2F1(r1)−
∫ x1

r1

x1dF1(x1) = (x2 − x1)F1(x1) + (r1 − r2)F1(r1) +

∫ x1

r1

F1(x1)dx1,

(67)

where the first equality has been established above, the second equality is obtained by chang-

ing the order of integration, the inequality holds because x̂2(x1) ≤ x1, and the last equality

is obtained by integrating by parts. Combining (67) with
∫ x1

0
q1(x1) =

∫ x1

r1
F2(x̂2(x1))dx1 ≤∫ x1

r1
F2(x1)dx1 yields the following lower bound for the right-hand side of (64):

x1(1− F1(x1)) + (r1 − r2)F1(r1)−
∫ x1

r1

F2(x1)− F1(x1)dx1 (68)

Since r1 > r2, x1 (1− F1(x1)) + (r1 − r2)F1(r1) > 0. So, there exists ε > 0 s.t. (68) and

hence the right-hand side of (64) is positive when |F2(x)− F1(x)| < ε.

Next, let us provide an upper bound for the right-hand side of (65) and show that this

upper bound is negative under the conditions of the Theorem. First, we have:∫ x1

0

q1(x1)dx1 =

∫ x1

r1

F2(x̂1(x2))dx1 =

∫ x2

0

(x1 −max{x̂12(x2), r1}) dF2(x2) =

x1F2(x2)− r1F2(r2)−
∫ x2

r2

x̂12(x2)dF2(x2) ≥ x1F2(x2)− r1F2(r2)− x1(F2(x2)− F2(r2)),

(69)

where the first equality has been established above, the second equality is obtained by

changing the order of integration, the inequality holds because x̂1(x2) ≤ x1 for all x2 ∈ [0, x2],

and the last equality is obtained by integrating by parts.

Combining (69) with
∫ x2

0
q2(x2) =

∫ x2

r2
F1(x̂1(x2))dx2 ≤ F1(x1)(x2−r2) yields the following

upper bound for the right-hand side of (65):
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− x2(1− F1(x1)) + r1F2(r2) + x1(F2(x2)− F2(r2))− F1(x1)r2 (70)

From (54) and (56) it is easy to see that there exist constants K1 > 0 and K2 > 0 s.t.

|x1−x2| < εK1 and |r2− r1| < εK2 if |m2−m1| < ε and |F2(x)−F1(x)| < ε for all x ∈ [0, 1].

So when ε > 0 is sufficiently small then (70), and hence the right-hand side of (65) are

negative.

So, when the right-hand side of (64) is positive and the right-hand side of (65) is negative,

both (64) and (65) holds when |m1 − m2| < ψ when is sufficiently small. So, setting η =

min{ε, ψ} concludes the proof of Claim 5.

Finally, note that by a direct extension of the method used in the symmetric case, the

optimal asymmetric mechanism is a solution to the dual optimization problem. Since the

latter is convex, the optimal mechanism is unique and is characterized by the first-order

conditions which by Theorem 2 are represented by the budget constraints. So the feasible

solution to these first-order condition must also be unique. Hence, the threshold pair (x1, x2)

solving the budget constraints and satisfying the feasibility condition must be unique. Q.E.D.
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11 Online Appendix (Not for Publication)

Top Auction and Budget-Handicap Auction with

Three Bidders, under Uniform Type Distribution.

11.1 Top Auction

In the top auction, the reservation value is given by rt = x̄t − (x̄t)
2

2
. Also, qi(x) = x2 for all

x ∈
[
x̄t − (x̄t)

2

2
, x̄t
)

, and qi(x̄
t) is set to satisfy the budget constraint of bidder i ∈ {1, 2, 3}.

Then conditions (26) and (28) simplify to:

3∑
i=1

mi = x̄t(1 + x̄t) +

(
x̄t − (x̄t)

2

2

)3

m1 −
m2 +m3

2
≤ x̄t

(
1− x̄t1 + x̄t

2

)
m1 −m3 ≤ x̄t

(
1−

(
x̄t
)2
)

(71)

Top auction is optimal when the system (71) has a solution x̄t.

11.2 Budget-Handicap Auction with Top cluster

Since x̄1 = x̄2 in the top cluster, we will simplify the notation and let x̄1 denote the threshold

of bidders 1 and 2 in the rest of this subsection. So, we have x̄1 > x̄3, γ1(x) = γ2(x) =

2x−2x̄1 + x̄2
1 for x < x̄1, γ1(x̄1) = γ2(x̄1) = x̄2

1; γ3(x) = 2x−2x̄3 + x̄2
3 for x < x̄3, γ3(x̄3) = x̄2

3.

The bidders’ reservation values are given by r1 = r2 = x̄1 − x̄2
1

2
, r3 = x̄3 − x̄2

3

2
.

Then by Lemma 7 for i ∈ {1, 2}, qi(x) = 0 for x < x̄1− x̄2
1

2
, qi(x) = x(x− x̄1 +

x̄2
1

2
+ x̄3− x̄2

3

2
)

for x ∈ (x̄1 − x̄2
1

2
, x̄1 − x̄2

1

2
+

x̄2
3

2
], and qi(x) = x for x ∈ (x̄1 − x̄2

1

2
+

x̄2
3

2
, x̄1). The values of q1(x̄1)

and q2(x̄1) are determined by the budget constraints of bidders 1 and 2.

For bidder 3, we have q3(x) = 0 for x < x̄3 − x̄2
3

2
, q3(x) =

(
x− x̄3 +

x̄2
3

2
+ x̄1 − x̄2

1

2

)2

for

x ∈ (x̄3 − x̄2
3

2
, x̄3), and q3(x̄) =

(
x̄2

3

2
+ x̄1 − x̄2

1

2

)2

.

Note that while q3(x) is continuous everywhere above r3, q1(x) and q2(x) experience two

jumps. First, there is a jump at x̄1− x̄2
1

2
+

x̄2
3

2
, as bidders 1 and 2 with values above this level

no longer face the competition from bidder 3 because γ1(x̄1− x̄2
1

2
+

x̄2
3

2
) = γ3(x̄3). The second

jump happens at the threshold x̄1, since limx→x̄− q1(x) + q2(x) = 2x̄ < 1 + x̄ = q1(x̄) + q2(x̄).

By Theorem 2 (conditions (21)-(23)), the budget-handicap auction with a top cluster is
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optimal if the following system of two equations and one inequality has a solution:

m3 = x̄3q3(x̄3)−
∫ x̄3

x̄3−
x̄2
3
2

q3(x3)dx3 (72)

m1 +m2 = (1 + x̄1)− 2

∫ x̄1

x̄1−
x̄2
1
2

q1(x1)dx1 (73)

m1 −m2 ≤ x̄1(1− x̄1).

Using the expressions for qi(x), i ∈ {1, 2, 3} in (72) and (73) yields:

m3 = x̄3

(
x̄1 +

x̄2
3

2
− x̄2

1

2

)2

−
∫ x̄3

x̄3−
x̄2
3
2

(
s− x̄3 + x̄1 +

x̄2
3

2
− x̄2

1

2

)2

ds = x̄3

(
x̄1 +

x̄2
3

2
− x̄2

1

2

)2

−(
x̄1 +

x̄2
3

2
− x̄2

1

2

)3

3
+

(
x̄1 − x̄2

1

2

)3

3
= − x̄

6
3

24
+
x̄5

3

4
+ x̄3

3

(
1− x̄3

4

)(
x̄1 −

x̄2
1

2

)
+

(
x̄3 −

x̄2
3

2

)(
x̄1 −

x̄2
1

2

)2

(74)

m1 +m2 = x̄1(1 + x̄1)− 2

∫ x̄1

x̄1+
x̄2
3
2
−

x̄2
1
2

ydy − 2

∫ x̄1+
x̄2
3
2
− x̄2

1
2

x̄1−
x̄2
1
2

y

(
y − x̄1 + x̄3 +

x̄2
1

2
− x̄2

3

2

)
)dy

= x̄1(1 + x̄1) +
x̄4

3

4

(
1− x̄3 +

x̄2
3

6

)
− x̄3

1

(
1− x̄1

4

)
+

(
x̄1 −

x̄2
1

2

)
x̄2

3

(
1− x̄3

2

)2

(75)

Equations (74) and (75) implicitly define x̄1 and x̄3. If the solution is such that m1−m2 ≤
x̄1(1− x̄1), then the optimal mechanism is a handicap auction with a “top cluster.” The set

of budgets for which this is true is depicted in Figure 4.

11.3 Lower cluster

Next, consider the case of the “lower cluster” with x̄1 > x̄2 = x̄3. To simplify the pre-

sentation, we let x̄2 denote the threshold of bidders 2 and 3 and drop x̄3 from the nota-

tion. In this case we have: γ1(x1) = 2x − 2x̄1 + x̄2
2 for x1 < x̄1, γ1(x̄1) > γ−1 (x̄1) =

x̄2
2

2
,

γ2(x) = γ3(x) = 2x− 2x̄2 + x̄2
2 for x < x̄2, γ2(x̄2) = γ3(x̄2) = x̄2

2. The reservation values are

r1 = x̄1 − x̄2
2

2
and r2 = r3 = x̄2 − x̄2

2

2
.

The probabilities of trading are given by: q1(x1) = 0 for x1 < x̄1 − x̄2
2

2
, q1(x1) =

(x1 − x̄1 + x̄2)2 for x1 ∈
[
x̄1 − x̄2

2

2
, x̄1

)
, q1(x̄1) = 1. For i ∈ {2, 3}, qi(x) = 0 for x < x̄2 − x̄2

2

2
,

and qi(x) = x (x− x̄2 + x̄1) for x ∈
[
x̄2 − x̄2

2

2
, x̄2

)
. Finally, q2(x̄2) and q3(x̄2) are determined

by the budget constraints of bidders 2 and 3, correspondingly.
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By Theorem 2, condition (21) must hold for bidder 1 and conditions (22) and (23) must

hold for bidders 2 and 3 i.e.:

m1 = x̄1 −
∫ x̄1

x̄1−
x̄2
2
2

(s− x̄1 + x̄2)2 ds = x̄1 −
x̄3

2

3
+

(
x̄2 − x̄2

2

2

)3

3

= x̄1 −
x̄2

2

6

(
x̄2

2 + x̄2

(
x̄2 −

x̄2
2

2

)
+

(
x̄2 −

x̄2
2

2

)2
)

= x̄1 −
x̄4

2

2

(
1− x̄2

2
+
x̄2

2

12

)
(76)

m2 +m3 = x̄2x̄1(1 + x̄2)− 2

∫ x̄2

x̄2−
x̄2
2
2

s (s− x̄2 + x̄1) ds = x̄1x̄2(1 + x̄2)− 2x̄3
2

3
+

2
(
x̄2 − x̄2

2

2

)3

3

− (x̄1 − x̄2)

(
x̄2

2 −
(
x̄2 −

x̄2
2

2

)2
)

= x̄1x̄2(1 + x̄2) +
x̄5

2

4

(
1− x̄2

3

)
− x̄3

2x̄1

(
1− x̄2

4

)
(77)

m2 −m3 ≤ x̄2(1− x̄2)x̄1 (78)

Equations (76) and (77) implicitly define x̄1 and x̄2. If the solution satisfies (78), the optimal

mechanism is the handicap auction with the lower cluster and thresholds x̄1 and x̄2 = x̄3.

The set of budgets for which this is true is depicted in Figure 5.

11.4 No Clusters.

Finally, we consider the case with no clusters i.e., x̄1 > x̄2 > x̄3.

In this case, γ1(x1) = 2x−2x̄1+x̄2
2 for x1 < x̄1, γ1(x̄1) > γ−1 (x̄1) =

x̄2
2

2
, γ2(x) = 2x−2x̄2+x̄2

2

for x < x̄2, γ2(x̄2) = x̄2
2, γ3(x) = 2x − 2x̄3 + x̄3

3 for x < x̄3, γ3(x̄3) = x̄2
3. The reservation

values are r1 = x̄1 − x̄2
2

2
, r2 = x̄2 − x̄2

2

2
, and r3 = x̄3 − x̄2

3

2
.

Therefore, the probabilities of trading of bidder 1 are as follows: q1(x) = 0 for x <

x̄1 − x̄2
2

2
, q1(x) = (x − x̄1 + x̄2)

(
x− x̄1 + x̄3 +

x̄2
2

2
− x̄2

3

2

)
for x ∈

[
x̄1 − x̄2

2

2
, x̄1 +

x̄2
3

2
− x̄2

2

2

]
,

q1(x) = x− x̄1 + x̄2 for x ∈
(
x̄1 +

x̄2
3

2
− x̄2

2

2
, x̄1

)
, and q1(x̄1) = 1.

For bidder 2, q2(x) = 0 for x < x̄2 − x̄2
2

2
, q2(x) = (x − x̄2 + x̄1)

(
x− x̄2 + x̄3 +

x̄2
2

2
− x̄2

3

2

)
for x ∈

[
x̄2 − x̄2

2

2
, x̄2 +

x̄2
3

2
− x̄2

2

2

]
, q2(x) = x− x̄2 + x̄1 for x ∈

(
x̄2 +

x̄2
3

2
− x̄2

2

2
, x̄2

)
, q2(x̄2) = x̄1.

Finally, for bidder 3, q3(x) = 0 for x < x̄3 − x̄2
3

2
, q3(x) =

(
x− x̄3 + x̄1 +

x̄2
3

2
− x̄2

2

2

)
×

×
(
x− x̄3 + x̄2 +

x̄2
3

2
− x̄2

2

2

)
for x ∈

[
x̄3 − x̄2

3

2
, x̄3

)
, and q3(x̄3) = (x̄2 +

x̄2
3

2
− x̄2

2

2
)(x̄1 +

x̄2
3

2
− x̄2

2

2
).

By Theorem 2, in the “no cluster” case the necessary and sufficient conditions charac-

terizing the optimal thresholds x̄1, x̄2 and x̄3 are the budget constraints (21) i.e., mi =

x̄iqi(x̄i) −
∫ x̄i
ri
qi(s)ds for i = 1, 2, 3. If the solution to this system of three equations exists

and is such that 1 ≥ x̄1 > x̄2 > x̄3 ≥ 0, then this configuration with no clusters is optimal.
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In the rest of this subsection, we will exhibit the system of three equations mi = x̄iqi(x̄i)−∫ x̄i
ri
qi(s)ds for i = 1, 2, 3 explicitly using the expressions for qi(.) above and then replace it

with a simpler system. First, consider i = 1. We have:

m1 = x̄1 −
∫ x̄1+

x̄2
3
2
− x̄2

2
2

x̄1−
x̄2
2
2

(x− x̄1 + x̄2)

(
x− x̄1 + x̄3 +

x̄2
2

2
− x̄2

3

2

)
dx−

∫ x̄1

x̄1+
x̄2
3
2
−

x̄2
2
2

x− x̄1 + x̄2ds =

x̄1 −

(
x̄2 +

x̄2
3

2
− x̄2

2

2

)3

3
+

(
x̄2 − x̄2

2

2

)3

3
+

(
x̄2 − x̄3 − x̄2

2

2
+

x̄2
3

2

)
2

((
x̄2 +

x̄2
3

2
− x̄2

2

2

)2

−
(
x̄2 −

x̄2
2

2

)2
)

− x̄2
2

2
+

(
x̄2 +

x̄2
3

2
− x̄2

2

2

)2

2
= x̄1 +

x̄4
3

8

(
1− x̄3 +

x̄2
3

6

)
− x̄3

2

2

(
1− x̄2

4

)
+

(
x̄2 −

x̄2
2

2

)
x̄2

3

2

(
1− x̄3

2

)2

(79)

Second, using the expressions for q2(.) and q3(.) derived above, we obtain:

m2 = x̄2x̄1 −
∫ x̄2+

x̄2
3
2
− x̄2

2
2

x̄2−
x̄2
2
2

(x− x̄2 + x̄1)

(
x− x̄2 + x̄3 +

x̄2
2

2
− x̄2

3

2

)
dx−

∫ x̄2

x̄2+
x̄2
3
2
−

x̄2
2
2

x− x̄2 + x̄1ds

(80)

m3 = x̄3(x̄2 +
x̄2

3

2
− x̄2

2

2
)(x̄1 +

x̄2
3

2
− x̄2

2

2
)−

∫ x̄3

x̄3−
x̄2
3
2

(x− x̄3 + x̄1 +
x̄2

3

2
− x̄2

2

2
)(x− x̄3 + x̄2 +

x̄2
3

2
− x̄2

2

2
)dx

(81)

Next, we replace (80) and (81) with the equations for m1−m2 and m2−m3 as follows. First,

subtracting (80) from (79) we obtain:

m1 −m2 = x̄1(1− x̄2) +

∫ x̄2+
x̄2
3
2
− x̄2

2
2

x̄2−
x̄2
2
2

(x̄1 − x̄2)(x− x̄2 + x̄3 +
x̄2

2

2
− x̄2

3

2
)dx+

∫ x̄2

x̄2+
x̄2
3
2
−

x̄2
2
2

x̄1 − x̄2ds

= x̄1(1− x̄2) +
x̄1 − x̄2

2

(
x̄2

2 −
(
x̄3 −

x̄2
3

2

)2
)
. (82)

Finally, we perform a change of variable of integration in the second term of (80) to y =

x− x̄2 +
x̄2

2

2
+ x̄3 − x̄2

3

2
and subtract (81) from the result to obtain:

m2 −m3 = x̄1x̄2 −
x̄2

1

2
+

(
x̄1 +

x̄2
3

2
− x̄2

2

2

)2

2
− x̄3

(
x̄2 +

x̄2
3

2
− x̄2

2

2

)(
x̄1 +

x̄2
3

2
− x̄2

2

2

)
+

∫ x̄3

x̄3−
x̄2
3
2

(
x− x̄3 + x̄1 +

x̄2
3

2
− x̄2

2

2

)(
x̄2 −

x̄2
2

2
− x̄3 +

x̄2
3

2

)
dx =

x̄1x̄2 + (x̄2x̄3 − x̄1(1− x̄3))
x̄2

2 − x̄2
3

2
+

(
1

2
− x̄3

)(
x̄2

2

2
− x̄2

3

2

)2

+
x̄2

3

2
(x̄2 −

x̄2
2

2
− x̄3 +

x̄2
3

2
)(x̄1 +

x̄2
3

4
− x̄2

2

2
).

(83)
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To conclude, when the solution to the system (79), (82) and (83) satisfies x̄1 > x̄2 > x̄3, this

is the optimal mechanism. The set of budgets for this case is depicted in Figure 5.

5


